

ASX RELEASE

ASX RELEASE

24 October 2022

ASX CODE

PNN

REGISTERED OFFICE

Power Minerals Limited 6/68 North Terrace Kent Town SA 5067

t: +61 8 8218 5000 e: admin@powerminerals.com.au w: www.powerminerals.com.au

BOARD

Stephen Ross Non-Executive Chairman

Mena Habib Executive Director

James Moses Non-Executive Director

David Turvey Non-Executive Director

PROJECTS

Argentina Salta Lithium Project

Santa Ines Copper-Gold Project

Australia Eyre Peninsula Kaolin-Halloysite Project

Musgrave Nickel-Copper-Cobalt-PGE Project

Encouraging Halloysite Results from Eyre Peninsula Kaolin Project

HIGHLIGHTS

- Laboratory assay results from drilling confirm significant thick intersections of halloysite-rich kaolin mineralisation
- Results of minus 45-micron samples contain an impressive 14m at 17.8% halloysite from 24m in drillhole PKD22-001
- Drillhole PKD22-001 contains 26m at 77.1% kaolin including 16m at 86.1% kaolin from 8m
- First confirmed halloysite from the Kapinnie Kaolin Deposit within EL6689 and Power Minerals' licences
- Additional results on halloysite-rich kaolin are expected Q4 2022
- The positive halloysite results plus recently released kaolin and REE results from drilling at the Eyre Peninsula Project reinforce Power's specialty clay strategy
- The specialty clay strategy is to define high value mineral products to supply advanced technology industries

Diversified minerals company Power Minerals Limited (ASX: PNN) (**Power** or **the Company**) is pleased to announce the first laboratory results for halloysite¹ kaolin mineralisation from aircore drilling at its Eyre Peninsula Kaolin Project in South Australia (Figure 1).

Power completed its maiden aircore drilling program at the Eyre Peninsula Project in May 2022 and subsequently released initial kaolin results (ASX announcement, 4 October 2022).

In line with Power's Specialty Clay Strategy, this stage of testing focused on the mineralogy of the kaolin clay size fraction (minus 45 micron) from the Kapinnie Kaolin Deposit within EL6689. Mineralogy analysis from X-Ray Diffraction (XRD) was completed on two drillholes, with both confirming thick intersections of kaolin.

Further kaolin results are expected during the fourth quarter (Q4) of 2022, including initial analyses of kaolin via Power's XRD equipment. These XRD results will guide additional characterisation tests for advanced technology market applications.

"These incredibly positive initial results for halloysite-rich kaolin mineralisation at the Eyre Peninsula Kaolin Project go a long way towards confirming the high-quality of the expected products. They provide Power with direction for ongoing evaluation studies, while strongly supporting Power's specialty clay strategy to develop and produce high-margin, value-added products to supply advanced technology applications."

Power Minerals Executive Director, Mena Habib

The company completed a 128 aircore drillhole program for 4,217 metres as part of its first stage reconnaissance drilling at the Eyre Peninsula Kaolin Project (ASX announcement, 31 May 2022). Results have been released of elevated rare earth elements (REE) associated with the kaolin mineralisation (ASX announcement, 4 October 2022), and initial kaolin results (ASX announcement, 4 October 2022).

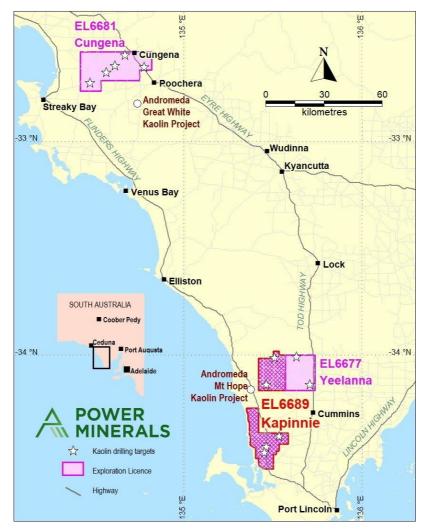
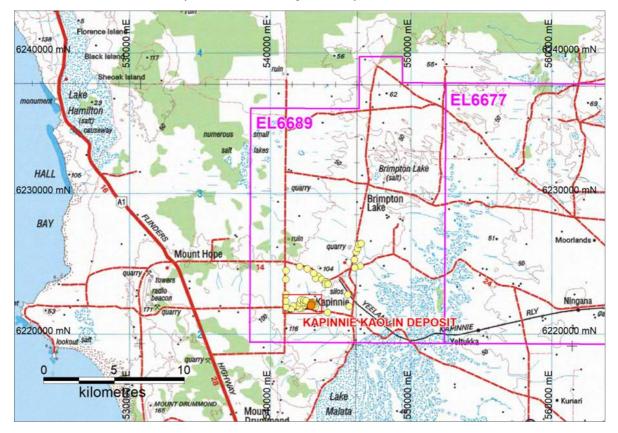


Figure 1: Eyre Peninsula Kaolin-Halloysite Project location map



Discussion of Initial Halloysite-rich Kaolin Results, Kapinnie EL6689

The company completed the first stage drilling program early in 2022, comprising a shallow, wide-spaced grid pattern around an historical isolated occurrence of kaolin.

These are the first results, from drill hole PKD22-001, confirming halloysite within the Kapinnie Kaolin Deposit in EL6689 (Figure 2 and Figure 3). Drillhole PKD22-001 is located adjacent to an abandoned water well in which kaolin was reported in 1943 by the Department of Mines (Dickinson, 1943).

Figure 2: Drill hole location map, Kapinnie EL6689, Eyre Peninsula Kaolin-Halloysite Project. Drillholes containing kaolin marked in yellow.

As part of Power's Specialty Clay Strategy, this stage of testing focused on the kaolin mineralogy to confirm the occurrence and content of halloysite-type kaolin within the overall kaolin mineralisation. The return of results has taken longer than expected, with XRD completed on two drillholes, PKD22-001 and PKD22-008, with both confirming thick intersections of kaolin. However, the first laboratory was not able separate halloysite from kaolin with their XRD analysis which means the halloysite content is still unknown for drillhole PKD22-008. Different laboratories are being used to encourage a quicker turnaround of results and to determine a more cost-effective method on handling the large quantity of samples. Confirmation of brightness and XRF elemental composition will follow.

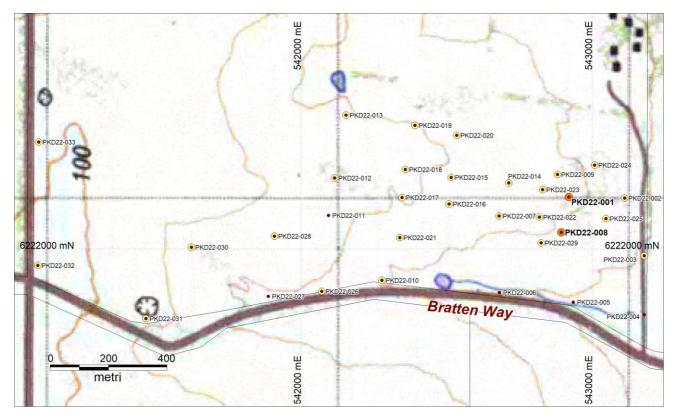


Figure 4: Drillhole location map, Kapinnie Kaolin Deposit EL6689, Eyre Peninsula Kaolin Project

Selected drill samples from drillhole PKD22-001 were submitted to Bureau Veritas Laboratories (Adelaide) for sample preparation prior to XRD analyses. Sample weights were recorded before any sampling or drying, then samples were dried at a low temperature (60°C) to avoid destruction of halloysite. The samples were wet sieved at 180µm and 45µm and, all plus and minus fractions weighed.

Quantitative XRD analysis was completed by CSIRO, Division of Land and Water, South Australia, on selected representative minus 45µm samples from Bureau Veritas. A three-gram sub-sample was micronized, slurried and spray dried to produce a spherical agglomerated sample for XRD analyses. Quantitative analyses of the XRD data was performed by CSIRO using SIROQUANT, with halloysite:kaolinite ratios determined using profile fitting by TOPAS, calibrated by SEM point counting of a suite of 20 standards. No standards were submitted by Power in the XRD quantification process, though Power included three external blind duplicate samples for quality control purposes.

Results of the XRD analyses for drill hole PKD22-001 are summarised in Figure 5 and Table 1.

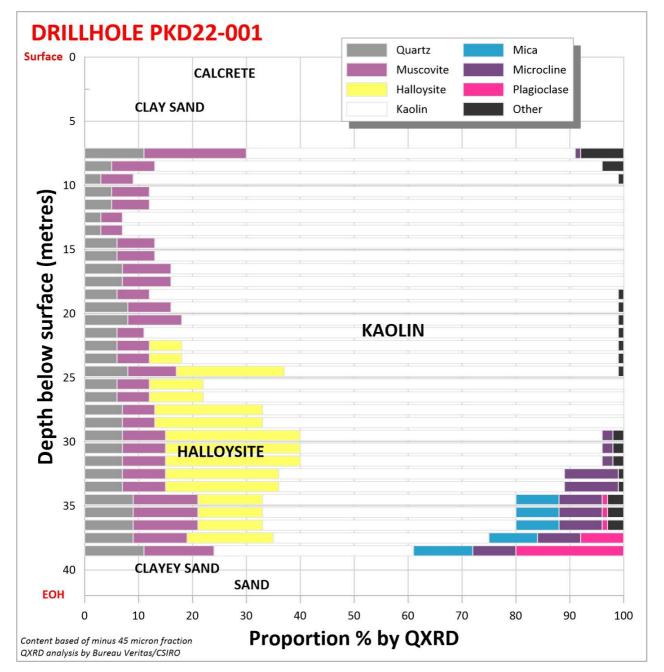


Figure 5: Summary mineralogy and halloysite XRD results from drill hole PKD22-001, Kapinnie EL6689.

										XRD minera	concentra	ation % in	minus 45	um fraction	า		
Sample	Drillhole	From metres	To metres	Interval metres	Notes	Size fraction % minus 45um	Quartz	Halloysite	Kaolin	Montmorillonite	Muscovite	Biotite/ Phlogopite	Microcline	Orthoclase	Plagioclase	Halloysite Cryst Size	Kaolinite Cryst Size
PK-001	PKD22-001	7	8	1		32.73	11		61	2	19		1			25	132
PK-002	PKD22-001	8	9	1		27.38	5		83		8					25	122
PK-003	PKD22-001	9	10	1		49.94	3		90		6					25	131
PK-004	PKD22-001	10	12	2	Duplicate of PK-017	54.12	5		88		7					25	120
PK-017	PKD22-001	10	12	2	Duplicate of PK-004	55.95	5		88		7					25	129
PK-005	PKD22-001	12	14	2		52.95	4		89		6					25	113
PK-006	PKD22-001	14	16	2	Duplicate of PK-020	49.23	6		86		7					25	110
PK-020	PKD22-001	14	16	2	Duplicate of PK-006	49.08	6		87		7					25	113
PK-007	PKD22-001	16	18	2		43.44	7		84		9					25	110
PK-008	PKD22-001	18	19	1		47.75	6		87		6					25	110
PK-009	PKD22-001	19	20	1		42.91	8		83		8					25	96
PK-010	PKD22-001	20	21	1	Duplicate of PK-024	39.94	7		83		9					25	89
PK-024	PKD22-001	20	21	1	Duplicate of PK-010	38.66	9		79		11					25	88
PK-011	PKD22-001	21	22	1		46.37	6		88		5					25	97
PK-012	PKD22-001	22	24	2		41.38	6	6	87		6					25	86
PK-013	PKD22-001	24	25	1		43.42	8	20	82		9					25	83
PK-014	PKD22-001	25	27	2		45.51	6	10	88		6					25	89
PK-015	PKD22-001	27	29	2		48.41	7	20	87		6					25	90
PK-016	PKD22-001	29	32	3		42.79	7	25	82		8		2			22	81
PK-018	PKD22-001	32	34	2		41.50	7	21	74		8		10	<1		24	84
PK-019	PKD22-001	34	37	3		33.71	9	12	59		12	8	8	1	1	25	77
PK-022	PKD22-001	37	38	1		29.77	9	16	56		10	9	8		8	21	66
PK-023	PKD22-001	38	39	1		28.07	11		37		13	11	8		20	25	60

Table 1: Summary halloysite XRD results (red) Bureau Veritas from drillhole PKD22-001, Kapinnie EL6689

The positive initial XRD results for drill hole PKD22-001 confirm a significant thick intersection of halloysite-rich kaolin mineralisation. Results of minus 45-micron samples contain an impressive 14 metres at 17.8% halloysite contained within 26 metres at 77.1% kaolin in drillhole PKD22-001. Of particular interest, the average halloysite particle size is approximately 25 microns compared to larger kaolinite particles at approximately 80 microns. This significant difference in particle size distribution may have positive implications for beneficiation processing to increase halloysite content in kaolin products.

Halloysite is a polymorph of kaolinite (both are kaolin minerals of the same chemical composition) that has uses in high-value traditional markets, such as high-quality porcelain ceramics, and likely potential applications in advanced nanotechnology and ion exchange markets. These uses of halloysite relate to its unusual physical properties including very high surface area, tube-like morphology and bonding reactivity. These properties align with Power's Specialty Clay Strategy to define high value mineral products to supply advanced technology industries.

Appendix 1 provides details on drillholes and composite kaolin samples collected from EL6689. Some samples are awaiting dispatch pending initial results of kaolin distribution and content. The large number of composite samples collected from within EL6689, which were capped at three metres length, highlights the wide distribution of kaolin on the license area (see Figure 2). From the 229 composite samples collected from EL6689 thirty are duplicates obtained by re-spearing the initial one metre sample bags. These quality control duplicate samples represent 13.1% of the total samples. From the current results there were three internal duplicates from drillhole PKD22-001 and two single external duplicates from two separate drillholes (PKD22-001 and PKD22-008).

Kaolin Project - Next Steps

- Interpret and report all analytical results from initial reconnaissance drilling program, with results expected to be received during Q4 2022.
- Based on field observations and results, organise access to conduct infill drilling of white kaolin mineralisation targets on both Kapinnie EL6689 and Cungena EL6681.
- Conduct additional XRD, physical and chemical analyses on selected kaolin samples to determine halloysite content as a guide for characterisation and market applications.
- Complete reconnaissance drilling of all Eyre Peninsula Kaolin Project exploration licenses to identify additional targets of halloysite-kaolin mineralisation.

Authorised for release by the Board of Power Minerals Limited.

-ENDS-

For further information please contact:

Power Minerals Limited E: admin@powerminerals.com.au T: +61 8 8218 5000

Additional information is available at www.powerminerals.com.au

About Power Minerals Limited

Power Minerals Limited is a diversified ASX-listed mineral resources exploration company with a portfolio of projects in demand driven commodities. It is focused on the systematic exploration and development of its projects. These include the Salta Lithium Brine Project in the prolific lithium triangle in the Salta Province in Argentina, the Eyre Peninsula Kaolin-Halloysite Project, strategically located on the Eyre Peninsula in South Australia, and the Musgrave Nickel-Copper-Cobalt-PGE Project in the Musgrave Province in northern South Australia. The Company also holds the Santa Ines Copper-Gold Project in Argentina, located in the same geological setting as BHP's world-class, nearby Escondida Copper-Gold Mine in Chile.

Competent Persons Statement

The information in this document that relates to the kaolin project has been prepared with information compiled by Steven Cooper, FAusIMM. Mr Steven Cooper is the Australian Exploration Manager and is a full-time employee of the Company. Mr Steven Cooper has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Steven Cooper consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears.

Forward looking Statements

This announcement contains 'forward-looking information' that is based on the Company's expectations, estimates and projections as of the date on which the statements were made. This forward-looking information includes, among other things, statements with respect to the Company's business strategy, plans, development, objectives, performance, outlook, growth, cash flow, projections, targets and expectations, mineral reserves and resources, results of exploration and related expenses. Generally, this forward-looking information can be identified by the use of forward-looking terminology such as 'outlook', 'anticipate', 'project', 'target', 'potential', 'likely', 'believe', 'estimate', 'expect', 'intend', 'may', 'would', 'could', 'should', 'scheduled', 'will', 'plan', 'forecast', 'evolve' and similar expressions. Persons reading this announcement are cautioned that such statements are only predictions, and that the Company's actual future results or performance may be materially different. Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the Company's actual results, level of activity, performance or achievements to be materially different from those expressed or implied by such forward-looking information.

APPENDIX 1. List of koalin composite samples from aircore drillholes within EL6689, Eyre Peninsula Kaolin-Halloysite Project, South Australia

	Easting	Northing	RL	Depth		From	То	Interval	Laboratory
Drillhole	(WGS84)	(WGS84)			Licence				-
			(m)	(m)		(m)	(m)	(m)	status
PKD22-001	542920	6222179	73.7	42	EL6689	7	8	1	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	8	9	1	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	9	10	1	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	9	12	3	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	10	12	2	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	12	14	2	Reported 4/10/22
PKD22-001	542920	6222179	73.7	42	EL6689	14	16	2	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	16	18	2	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	18	19	1	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	19	20	1	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	20	21	1	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	21	22	1	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	22	24	2	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	24	25	1	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	25	27	2	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	27	29	2	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	29	32	3	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	32	34	2	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	34	37	3	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	37	38	1	Sent to Lab
PKD22-001	542920	6222179	73.7	42	EL6689	38	39	1	Sent to Lab
PKD22-002	543111	6222175	66.0	20	EL6689	7	8	1	
PKD22-002	543111	6222175	66.0	20	EL6689	8	10	2	
PKD22-002	543111	6222175	66.0	20	EL6689	10	11	1	
PKD22-003	543179	6221977	64.0	19	EL6689	7	8	1	
PKD22-003	543179	6221977	64.0	19	EL6689	8	10	2	
PKD22-007	542680	6222114	74.0	31	EL6689	9	11	2	
PKD22-007	542680	6222114	74.0	31	EL6689	11	12	1	
PKD22-007	542680	6222114	74.0	31	EL6689	12	14	2	
PKD22-007	542680	6222114	74.0	31	EL6689	14	16	2	
PKD22-007	542680	6222114	74.0	31	EL6689	16	17	1	
PKD22-007	542680	6222114	74.0	31	EL6689	24	25	1	
PKD22-008	542894	6222058	71.8	41	EL6689	4	5	1	Reported 4/10/22
PKD22-008	542894	6222058	71.8	41	EL6689	5	7	2	Reported 4/10/22
PKD22-008	542894	6222058	71.8	41	EL6689	7	9	2	Reported 4/10/22
PKD22-008	542894	6222058	71.8	41	EL6689	9	11	2	Reported 4/10/22
PKD22-008	542894	6222058	71.8	41	EL6689	11	13	2	Reported 4/10/22
PKD22-008	542894	6222058	71.8	41	EL6689	11	13	3	Reported 4/10/22
PKD22-008	542894	6222058	71.8	41	EL6689	13	14	1	Reported 4/10/22
PKD22-008	542894	6222058	71.8	41	EL6689	14	17	3	Reported 4/10/22
PKD22-008	542894	6222058	71.8	41	EL6689	17	18	1	Reported 4/10/22
PKD22-008	542894	6222058	71.8	41	EL6689	18	20	2	Reported 4/10/22
PKD22-008	542894	6222058	71.8	41	EL6689	20	23	3	Reported 4/10/22
PKD22-008	542894	6222058	71.8	41	EL6689	23	26	3	Reported 4/10/22
PKD22-008	542894	6222058	71.8	41	EL6689	26	29	3	Reported 4/10/22
PKD22-008	542894	6222058	71.8	41	EL6689	29	31	2	Reported 4/10/22
PKD22-008	542894	6222058	71.8	41	EL6689	31	33	2	Reported 4/10/22
PKD22-008	542894	6222058	71.8	41	EL6689	33	35	2	Reported 4/10/22
PKD22-009	542881	6222256	73.8	45	EL6689	6	7	1	
PKD22-009	542881	6222256	73.8	45	EL6689	7	9	2	
PKD22-009	542881	6222256	73.8	45	EL6689	9	11	2	
PKD22-009	542881	6222256	73.8	45	EL6689	11	13	2	
PKD22-009	542881	6222256	73.8	45	EL6689	13	15	2	
PKD22-009	542881	6222256	73.8	45	EL6689	15	16	1	
1 1022 003	J-72001	0222230	75.0		110005	1.7	10	-	

Drillhole	Easting (WGS84)	Northing (WGS84)	RL (m)	Depth (m)	Licence	From (m)	To (m)	Interval (m)	Laboratory status
PKD22-009	542881	6222256	73.8	45	EL6689	16	18	2	
PKD22-009 PKD22-009	542881	6222256	73.8	45	EL6689	18	10	1	
PKD22-009	542881	6222256	73.8	45	EL6689	18	21	2	
PKD22-009 PKD22-009	542881	6222256	73.8	45	EL6689	21	23	2	
PKD22-009	542881	6222256	73.8	45	EL6689	23	26	3	
PKD22-009 PKD22-009	542881	6222256	73.8	45	EL6689	25	28	2	
PKD22-009 PKD22-009	542881	6222256	73.8	45	EL6689	28	30	2	
PKD22-009 PKD22-009	542881	6222256	73.8	45	EL6689	30	32	2	
PKD22-009 PKD22-009	542881	6222256	73.8	45	EL6689	30	34	2	
				45		32	36	2	
PKD22-009	542881	6222256	73.8	45	EL6689	34			
PKD22-009	542881	6222256	73.8	45	EL6689		38 40	2	
PKD22-009	542881	6222256	73.8		EL6689	38		2	
PKD22-010	542277	6221893	76.5	33	EL6689	7	10	3	
PKD22-010	542277	6221893	76.5	33	EL6689	10	13	3	
PKD22-010	542277	6221893	76.5	33	EL6689	13	15	2	
PKD22-010	542277	6221893	76.5	33	EL6689	15	17	2	
PKD22-010	542277	6221893	76.5	33	EL6689	17	19	2	
PKD22-010	542277	6221893	76.5	33	EL6689	19	20	1	
PKD22-012	542115	6222244	89.4	30	EL6689	12	14	2	
PKD22-013	542154	6222460	84.4	30	EL6689	10	11	1	
PKD22-013	542154	6222460	84.4	30	EL6689	11	12	1	
PKD22-014	542713	6222227	80.5	27	EL6689	6	7	1	
PKD22-014	542713	6222227	80.5	27	EL6689	7	10	3	
PKD22-014	542713	6222227	80.5	27	EL6689	10	13	3	
PKD22-014	542713	6222227	80.5	27	EL6689	13	16	3	
PKD22-014	542713	6222227	80.5	27	EL6689	16	18	2	
PKD22-014	542713	6222227	80.5	27	EL6689	18	21	3	
PKD22-015	542515	6222246	85.7	28	EL6689	9	10	1	
PKD22-015	542515	6222246	85.7	28	EL6689	10	11	1	
PKD22-015	542515	6222246	85.7	28	EL6689	11	12	1	
PKD22-015	542515	6222246	85.7	28	EL6689	12	14	2	
PKD22-016	542508	6222155	81.0	38	EL6689	9	11	2	
PKD22-016	542508	6222155	81.0	38	EL6689	11	14	3	
PKD22-016	542508	6222155	81.0	38	EL6689	14	15	1	
PKD22-016	542508	6222155	81.0	38	EL6689	15	16	1	
PKD22-017	542347	6222177	90.2	23	EL6689	7	8	1	
PKD22-017	542347	6222177	90.2	23	EL6689	8	11	3	
PKD22-017	542347	6222177	90.2	23	EL6689	14	15	1	
PKD22-018	542358	6222273	91.3	32	EL6689	6	9	3	
PKD22-018	542358	6222273	91.3	32	EL6689	9	11	2	Sent to Lab
PKD22-018	542358	6222273	91.3	32	EL6689	11	12	1	
PKD22-018	542358	6222273	91.3	32	EL6689	12	14	2	Sent to Lab
PKD22-018	542358	6222273	91.3	32	EL6689	14	16	2	Sent to Lab
PKD22-019	542391	6222425	88.4	30	EL6689	6	8	2	Sent to Lab
PKD22-019	542391	6222425	88.4	30	EL6689	8	10	2	Sent to Lab
PKD22-019	542391	6222425	88.4	30	EL6689	10	11	1	Sent to Lab
PKD22-019	542391	6222425	88.4	30	EL6689	11	12	1	Sent to Lab
PKD22-019	542391	6222425	88.4	30	EL6689	15	16	1	Sent to Lab
PKD22-020	542534	6222391	83.0	42	EL6689	7	9	2	Sent to Lab
PKD22-020	542534	6222391	83.0	42	EL6689	9	11	2	Sent to Lab
PKD22-020	542534	6222391	83.0	42	EL6689	11	14	3	Sent to Lab
PKD22-020	542534	6222391	83.0	42	EL6689	14	16	2	Sent to Lab
PKD22-020	542534	6222391	83.0	42	EL6689	16	17	1	Sent to Lab
PKD22-020	542534	6222391	83.0	42	EL6689	22	23	1	Sent to Lab

Drillhole	Easting	Northing	RL	Depth	Licence	From	То	Interval	Laboratory
Diministe	(WGS84)	(WGS84)	(m)	(m)	Literite	(m)	(m)	(m)	status
PKD22-021	542339	6222040	86.1	27	EL6689	7	8	1	Sent to Lab
PKD22-021	542339	6222040	86.1	27	EL6689	8	10	2	Sent to Lab
PKD22-021	542339	6222040	86.1	27	EL6689	10	13	3	Sent to Lab
PKD22-021	542339	6222040	86.1	27	EL6689	13	14	1	Sent to Lab
PKD22-022	542818	6222110	73.0	39	EL6689	21	24	3	Sent to Lab
PKD22-022	542818	6222110	73.0	39	EL6689	24	27	3	Sent to Lab
PKD22-023	542829	6222204	74.7	57	EL6689	8	10	2	Sent to Lab
PKD22-023	542829	6222204	74.7	57	EL6689	10	13	3	Sent to Lab
PKD22-023	542829	6222204	74.7	57	EL6689	13	16	3	Sent to Lab
PKD22-023	542829	6222204	74.7	57	EL6689	17	20	3	Sent to Lab
PKD22-023	542829	6222204	74.7	57	EL6689	22	25	3	Sent to Lab
PKD22-023	542829	6222204	74.7	57	EL6689	25	28	3	Sent to Lab
PKD22-023	542829	6222204	74.7	57	EL6689	27	30	3	Sent to Lab
PKD22-023	542829	6222204	74.7	57	EL6689	31	34	3	Sent to Lab
PKD22-023	542829	6222204	74.7	57	EL6689	34	37	3	
PKD22-023	542829	6222204	74.7	57	EL6689	37	40	3	
PKD22-023	542829	6222204	74.7	57	EL6689	40	42	2	
PKD22-023	542829	6222204	74.7	57	EL6689	42	45	3	
PKD22-023	542829	6222204	74.7	57	EL6689	46	49	3	
PKD22-024	543008	6222288	72.6	48	EL6689	9	11	2	
PKD22-024	543008	6222288	72.6	48	EL6689	11	14	3	
PKD22-024	543008	6222288	72.6	48	EL6689	14	17	3	
PKD22-024	543008	6222288	72.6	48	EL6689	17	19	2	Sent to Lab
PKD22-024	543008	6222288	72.6	48	EL6689	19	21	2	
PKD22-024	543008	6222288	72.6	48	EL6689	21	23	2	
PKD22-024	543008	6222288	72.6	48	EL6689	23	26	3	
PKD22-024	543008	6222288	72.6	48	EL6689	26	28	2	
PKD22-024	543008	6222288	72.6	48	EL6689	28	31	3	
PKD22-024	543008	6222288	72.6	48	EL6689	31	34	3	
PKD22-024	543008	6222288	72.6	48	EL6689	34	36	2	
PKD22-024	543008	6222288	72.6	48	EL6689	36	38	2	
PKD22-025	543047	6222105	65.6	19	EL6689	7	10	3	
PKD22-025	543047	6222105	65.6	19	EL6689	10	12	2	
PKD22-026	542071	6221855	79.7	9	EL6689	4	6	2	
PKD22-026	542071	6221855	79.7	9	EL6689	6	8	2	
PKD22-028	541908	6222045	89.9	45	EL6689	8	10	2	
PKD22-028	541908	6222045	89.9	45	EL6689	10	12	2	
PKD22-029	542824	6222021	83.9	48	EL6689	20	22	2	
PKD22-029	542824	6222021	83.9	48	EL6689	22	24	2	
PKD22-029	542824	6222021	83.9	48	EL6689	25	27	2	
PKD22-029	542824	6222021	83.9	48	EL6689	27	30	3	
PKD22-029	542824	6222021	83.9	48	EL6689	30	32	2	
PKD22-029	542824	6222021	83.9	48	EL6689	32	34	2	
PKD22-029	542824	6222021	83.9	48	EL6689	34	37	3	
PKD22-029	542824	6222021	83.9	48	EL6689	37	40	3	
PKD22-030	541623	6222006	87.3	9	EL6689	4	7	3	
PKD22-031	541467	6221762	93.8	13	EL6689	6	9	3	
PKD22-032	541095	6221944	106.6	27	EL6689	7	9	2	
PKD22-032	541095	6221944	106.6	27	EL6689	9	12	3	
PKD22-032	541095	6221944	106.6	27	EL6689	20	21	1	
PKD22-033	541098	6222368	98.5	24	EL6689	14	17	3	
PKD22-034	541096	6222850	96.0	27	EL6689	5	7	2	
PKD22-034	541096	6222850	96.0	27	EL6689	7	9	2	
PKD22-034	541096	6222850	96.0	27	EL6689	9	12	3	Sent to Lab

Drillhole	Easting	Northing	RL	Depth	Licence	From	То	Interval	Laboratory
	(WGS84)	(WGS84)	(m)	(m)		(m)	(m)	(m)	status
PKD22-034	541096	6222850	96.0	27	EL6689	12	15	3	
PKD22-034	541096	6222850	96.0	27	EL6689	16	17	1	
PKD22-035	541107	6224528	65.4	14	EL6689	10	12	2	Sent to Lab
PKD22-036	541103	6223902	75.6	17	EL6689	9	12	3	
PKD22-038	542065	6224819	62.8	46	EL6689	20	23	3	Sent to Lab
PKD22-038	542065	6224819	62.8	46	EL6689	23	26	3	Sent to Lab
PKD22-038	542065	6224819	62.8	46	EL6689	26	29	3	Sent to Lab
PKD22-038	542065	6224819	62.8	46	EL6689	29	32	3	Sent to Lab
PKD22-038	542065	6224819	62.8	46	EL6689	32	35	3	Sent to Lab
PKD22-038	542065	6224819	62.8	46	EL6689	35	36	1	Sent to Lab
PKD22-038	542065	6224819	62.8	46	EL6689	36	39	3	Sent to Lab
PKD22-038	542065	6224819	62.8	46	EL6689	39	42	3	Sent to Lab
PKD22-038	542065	6224819	62.8	46	EL6689	42	45	3	Sent to Lab
PKD22-039	542608	6224666	101.2	27	EL6689	11	14	3	
PKD22-039	542608	6224666	101.2	27	EL6689	14	17	3	
PKD22-039	542608	6224666	101.2	27	EL6689	17	20	3	
PKD22-039	542608	6224666	101.2	27	EL6689	20	22	2	Sent to Lab
PKD22-039	542608	6224666	101.2	27	EL6689	24	26	2	Sent to Lab
PKD22-040	543079	6224351	99.5	57	EL6689	15	18	3	
PKD22-040	543079	6224351	99.5	57	EL6689	18	21	3	
PKD22-040	543079	6224351	99.5	57	EL6689	21	24	3	
PKD22-040	543079	6224351	99.5	57	EL6689	24	26	2	
PKD22-043	544051	6221549	50.7	6	EL6689	4	6	2	Sent to Lab
PKD22-047	545599	6221994	36.7	33	EL6689	18	19	1	Sent to Lab
PKD22-051	544022	6223729	66.4	41	EL6689	14	16	2	Sent to Lab
PKD22-051	544022	6223729	66.4	41	EL6689	16	19	3	Sent to Lab
PKD22-051	544022	6223729	66.4	41	EL6689	25	26	1	Sent to Lab
PKD22-052	543417	6224123	85.9	27	EL6689	8	11	3	Sent to Lab
PKD22-052	543417	6224123	85.9	27	EL6689	11	14	3	Sent to Lab
PKD22-052	543230	6223963	77.2	37	EL6689	13	15	2	Sent to Lab
PKD22-054	545481	6222827	43.6	16	EL6689	7	10	3	Sent to Lab
PKD22-059	543665	6223904	69.5	51	EL6689	10	13	3	Sent to Lab
PKD22-059	543665	6223904	69.5	51	EL6689	13	16	3	Sent to Lab
PKD22-059	543665	6223904	69.5	51	EL6689	13	20	2	Sent to Lab
PKD22-059	543665	6223904	69.5	51	EL6689	20	20	2	Sent to Lab
PKD22-059	543665	6223904	69.5	51	EL6689	23	25	2	Sent to Lab
PKD22-059	543665	6223904	69.5	51	EL6689	25	27	2	Sent to Lab
PKD22-059 PKD22-060	543910	6223728	59.3	28	EL6689	11	12	1	Sent to Lab
PKD22-060	543910	6223728	59.3	28	EL6689	18	19	1	Sent to Lab
PKD22-000 PKD22-061	543898	6223575	57.6	27	EL6689	6	9	3	Sent to Lab
PKD22-001	544090	6223584	55.8	24	EL6689	7	9	2	Sent to Lab
PKD22-062 PKD22-062	544090	6223584		24	EL6689		12		
PKD22-062 PKD22-062	544090		55.8		EL6689	9		3	Sent to Lab
PKD22-062 PKD22-064	546383	6223584 6224870	55.8	24 30	EL6689	12	13 13	3	Sent to Lab
			51.4			10			
PKD22-065 PKD22-065	545990 545990	6224747 6224747	57.9 57.9	39 39	EL6689 EL6689	15	17 20	2	
						17		3	Sont to Lab
PKD22-067	545974	6225303	68.5	28	EL6689	25	26	1	Sent to Lab
PKD22-068	546099	6225859	70.7	22	EL6689	16	19	3	
PKD22-068	546099	6225859	70.7	22	EL6689	19	21	2	
PKD22-069	546202	6226119	77.7	22	EL6689	10	11	1	Contactor
PKD22-070	546273	6226417	81.5	42	EL6689	7	10	3	Sent to Lab
PKD22-070	546273	6226417	81.5	42	EL6689	10	13	3	Sent to Lab
PKD22-070	546273	6226417	81.5	42	EL6689	13	16	3	Sent to Lab
PKD22-070	546273	6226417	81.5	42	EL6689	15	16	1	Sent to Lab

Drillhole	Easting (WGS84)	Northing (WGS84)	RL (m)	Depth (m)	Licence	From (m)	To (m)	Interval (m)	Laboratory status
PKD22-070	546273	6226417	81.5	42	EL6689	16	19	3	Sent to Lab
PKD22-070	546273	6226417	81.5	42	EL6689	22	25	3	Sent to Lab
PKD22-070	546273	6226417	81.5	42	EL6689	25	27	2	Sent to Lab
PKD22-070	546273	6226417	81.5	42	EL6689	27	30	3	Sent to Lab
PKD22-070	546273	6226417	81.5	42	EL6689	30	33	3	Sent to Lab
PKD22-070	546273	6226417	81.5	42	EL6689	33	36	3	Sent to Lab
PKD22-070	546273	6226417	81.5	42	EL6689	36	39	3	Sent to Lab
PKD22-070	546273	6226417	81.5	42	EL6689	39	42	3	Sent to Lab
PKD22-071	546443	6226446	84.1	37	EL6689	10	12	2	Sent to Lab
PKD22-071	546443	6226446	84.1	37	EL6689	12	14	2	Sent to Lab
PKD22-071	546443	6226446	84.1	37	EL6689	14	17	3	Sent to Lab
PKD22-071	546443	6226446	84.1	37	EL6689	15	16	1	Sent to Lab
PKD22-071	546443	6226446	84.1	37	EL6689	17	20	3	Sent to Lab
PKD22-071	546443	6226446	84.1	37	EL6689	20	23	3	Sent to Lab
PKD22-071	546443	6226446	84.1	37	EL6689	24	27	3	Sent to Lab

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 All samples were collected from the aircore blade drilling, through a cyclone directly into plastic bags below at one metre intervals. Initial sample preparation was carried out at PNN's secure processing facility at Smithfield, South Australia by spearing method. This was completed by laying the bag on its side and recovering an entire cross cutting representative sample through the entire thickness of each one metre interval. An appropriate diameter PVC tube was used to spear approximately 200g into numbered small plastic bags, which were sent for analyses. The sample sizes are considered appropriate for the material being sampled. The Competent Person has reviewed referenced publicly sourced information and considers that sampling was commensurate with industry standards current at the time of drilling and is appropriate for the indication of the presence of mineralisation.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 McLeod Drilling used a Reverse Circulation Aircore drill rig mounted on a 6-wheel drive Toyota Landcruiser. Aircore drilling uses an 76mm aircore bit with 3 tungsten carbide blades and is a form of drilling where the sample is collected at the face and returned inside the inner tune. The drill cuttings are removed by the injection of compressed air into the hole via the annular area between the inner tube and the drill rod. Aircore drill rods are 3 metre NQ rods. All aircore drill holes were between 4m and 75m in length. The Competent Person has inspected the drilling program and considers that drilling techniques was commensurate with industry standards current at the time of drilling and is appropriate for the indication of the presence of mineralisation.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	 All initial one metre interval samples were weighed to check consistency.

Criteria	JORC Code explanation	Commentary
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All efforts were made to ensure the sample was representative. No relationship is believed to exist between sample recovery and grade, but no work has been completed to confirm this.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All samples were geologically logged to include details such as colour, grain size, rock type etc which is naturally qualitative in nature. All samples have quantitative magnetic susceptibility and pXRF measurements taken to support the geological logging. Representative chip tray samples of all intervals were collected and photographed. All samples are one metre vertical intervals.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	similar quality within each composite. Each composite spear sample consisted of contiguous one metre drill samples up to 3 metres in
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Selected drill samples were submitted to Bureau Veritas Laboratories (Adelaide). Sample weights were recorded before any sampling or drying. Bureau Veritas dried samples at a low temperature (60°C) to avoid destruction of halloysite. The sample was wet sieved at 180 and 45 µm and all plus and minus fractions weighed. Quantitative XRD analysis was completed by CSIRO, Division of Land and Water, South Australia on selected representative minus 45 µm samples from Bureau Veritas. A three gram sub-sample was micronized, slurried and spray dried to produce a spherical agglomerated sample for XRD analyses. Quantitative analyses of the

Criteria	JORC Code explanation	Commentary
		 XRD data was performed by CSIRO using SIROQUANT and halloysite kaolinite ratio determined using profile fitting by TOPAS, calibrated by SEM point counting of a suite of 20 standards. No standards were used in the XRD quantification process. PNN included three external blind duplicate sample. Blind duplicate samples have also been dispatched to other laboratories for two samples.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 There was no use of twinned holes. Blind duplicates of the single samples from drillhole PKD22-001 (12-14m) and PKD22-008 (11-13m) have been sent to another laboratory (Microanalysis Australia) and comparable results are acceptable. Three blind internal duplicates of intervals 10-12m, 14-16m and 20-21m from drillhole PKD22-001 were included within the sample batch to Bureau Veritas. All comparable results are acceptable. Data is exploratory in nature and is compiled into in-house relational database. Original laboratory supplied pdf reports and spreadsheets retained. Sample and assay data have been reviewed by the PNN Senior Geologist, who was involved in the sampling of the drilling at the time.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The location of drillhole collar was undertaken using a hand-held Garmin multi-band GPS in averaging mode which has an accuracy of +/- 1m using UTM MGA94 Zone 53. The quality and adequacy are appropriate for this level of exploration.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 There is no regular pattern and the spacing for the drilling is defined by access for the drill rig, geological parameters and land surface. Data spacing and distribution are not sufficient to establish the degree of geological and grade continuity or for resource reporting. The data spacing only provides guide for future drill planning. Sample compositing has been applied to a maximum of three metres.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 It is believed that the drilling has intersected the geology at right angles; however, it is unknown whether the drill holes have interested the mineralisation in a perpendicular manner. The mineralised horizon is obscured by a veneer of transported material. It is believed no bias has been introduced due to drilling orientation.
Sample	The measures taken to ensure sample security.	All samples have been in the custody of PNN employees since

Criteria	JORC Code explanation	Commentary
security		 drilling. Sealed samples were transported to Adelaide within PNN vehicles and stored in the secure PNN private property in Smithfield with no access from the public. Representative chip tray samples of all intervals were collected and photographed. These chip trays and photographs are stored securely. Best practices were undertaken at the time. All residual sample material (pulps) is stored securely
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	None undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Drilling was completed within Exploration Licences 6681 and 6689, both held by Pepinnini Kaolin Pty Ltd (a wholly owned subsidiary of PNN). These two licences are in JV with Seattle Capital Pty Ltd, Aerobotics Pty Ltd, and Kaolin SA Pty Ltd which together holds 20% interest. Sample results presented are all from EL6689. The tenements are in good standing with no known impediments.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Relevant previous exploration has been undertaken by BHP Minerals Pty Ltd and Iluka Resources Ltd, both for mineral sands only in the area west from Cungena (EL6681). Historical drilling was restricted to along roads and provides additional limited stratigraphic information. Dickinson (1943) reported kaolin from within a hand excavated water well west from Kapinnie.
Geology	• Deposit type, geological setting and style of mineralisation.	 The tenements are within the Gawler Craton, South Australia. PNN is exploring for kaolin and halloysite deposits and also possible associated ion adsorption clay (IAC) REE mineralisation. This release refers to kaolin mineralisation related to lateritic weathering processes on basement rock of the Gawler Craton, in particular the Palaeoproterozoic Moody Suite granitic and the

Criteria	JORC Code explanation	Commentary
		Sleaford and St Peter Suite granitic gneiss.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 PNN completed a 128 drillhole program in May 2022 on the western Eyre Peninsula. Based on visual and pXRF data selected samples from drillholes from other drillholes have been sent to the same and other laboratories but no results have been received. The drillhole data on the EL6681 drillholes with kaolin sampling is reported in the main body of the report. All holes were vertical; all samples are one metre drill intervals composited to a maximum of three meters depending on appearance.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 If aggregated results are presented (results over more than one metre) then they are downhole sample length weighted averages with no lower or upper limit cut-off applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 All holes are believed to intersect the mineralisation at 90 degrees and therefore represent true widths All intercepts reported are down hole lengths
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See main body of report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All other relevant data has been reported. The reporting is considered to be balanced. Where data has been excluded, it is not considered material.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 The target areas have been the subject of no previous exploration except west from Cungena with minor exploration for mineral sands along road reserves. The reported results are the first halloysite results received from the drilling program sample examination. The drillhole selection was not systematic as most samples from other drillholes have been dispatched to other laboratories. All relevant exploration data has been included in this report
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further examination of drill hole samples is progressing. To speed the receipt of results samples have been sent to separate laboratories. Further exploration drilling is required.