ASX ANNOUNCEMENT

ASX RELEASE

13 May 2025

ASX CODE

PNN

REGISTERED OFFICE

Power Minerals Limited Suite 6, Level 1 389 Oxford Street Mount Hawthorn WA 6019

t: +61 8 6385 2299 e: admin@powerminerals.com.au w: www.powerminerals.com.au

BOARD

Stephen Ross Non-Executive Chairman

Mena Habib Managing Director

James Moses Non-Executive Director

Caue Pauli de Araujo Non-Executive Director

Multiple high-grade gallium intersections at Santa Anna Project, Brazil

Highlights

- Power has discovered multiple high-grade gallium results from a review of historic drilling at the Santa Anna niobium carbonatite project in Goiás State, Brazil
- Power reports very high-grade gallium intersections, reaching up to 232.7g/t Ga₂O₃ (gallium oxide) and present from surface with some holes ending in mineralisation. **Highlighted gallium results include;**
 - o 164.1g/t Ga₂O₃ over 14m from surface in drillhole MN-RC-0004
 - incl. 232.7g/t Ga_2O_3 over 1m from 10m
 - incl. 215.3g/t Ga₂O₃ over 2m from 3m
 - incl. 217.5g/t Ga₂O₃ over 2m from 9m
 - $_{\odot}$ 167g/t Ga_2O_3 over 2m from surface in MN-RC-0005
 - $\circ~$ 80.2g/t Ga_2O_3 over 51m from surface to EOH (End of Hole) in MN- RC-0004
 - incl. 115.2g/t Ga₂O₃ over 27m from surface
 - \circ 62.7g/t Ga₂O₃ over 29m from surface in MN-RC-0005
 - \circ 60.6g/t Ga₂O₃ over 51m from surface to EOH in MN-RC-0010
 - incl. 80.6g/t Ga₂O₃ over 31m from surface
- 56.4g/t Ga₂O₃ over 25m from surface to EOH in MN-AC-0002
- 53.4g/t Ga₂O₃ over 50m from surface to EOH in MN-RC-0006 incl. 71.3g/t Ga₂O₃ over 15m from surface
- Drilling to date was primarily shallow (78% of all drilling \leq 30m) which presents an exciting opportunity
- Due diligence drilling to commence immediately to define an Exploration Target, with further drilling designed to delineate a JORC Mineral Resource (subject to results and the exercise of the option)
- Gallium presents a high value byproduct to the Niobium project.

"The Santa Anna Project has shown promising potential with multiple very high-grade gallium intersections from previous drilling which further enhances the Project's prospectivity, and its upside potential. Power's primary focus on the Project's niobium carbonatite potential has been supported by a thorough due diligence process, leading to increased confidence in the broader potential of the asset, particularly in gallium and REE. Drilling to date was primarily shallow (78% of all drilling \leq 30m) which presents an exciting opportunity.

The high-grade gallium results are derived from drilling within the central calcium-magnesium rich carbonatite zone in the Project area, prompting plans to identify similar zones within the wider project area which have yet to be drill tested or sampled. This represents an exciting exploration opportunity that the Company intends to pursue upon the exercise of the option and completion of the acquisition. Power is set to commence due diligence drilling at Santa Anna soon, with a commitment to report results as soon as they become available."

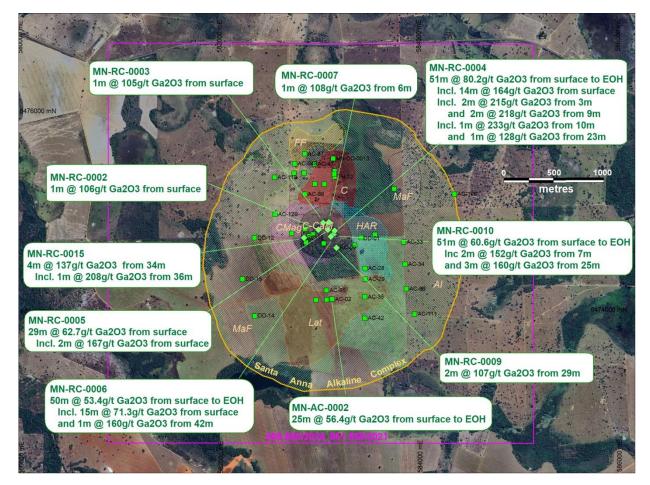
Power Minerals Limited Managing Director, Mena Habib

Power Minerals Limited (ASX: **PNN**, **Power** or the **Company**) is pleased to report the discovery of multiple, historic high-grade gallium assay results from drilling at the Santa Anna Niobium Carbonatite Project ("**Santa Anna**" or "**the Project**") in Goiás State, in the central region of Brazil.

The Santa Anna Project is showing promising potential, and Power has taken a significant step by signing a binding Letter of Intent (LoI) for an exclusive option to acquire the project and is currently conducting due diligence in preparation for the acquisition, as stated in the ASX announcement dated 16 April 2025.

The Project has a comprehensive drilling database consisting of 192 drillholes totalling 5,377 metres plus 196 surface geochemical samples and extensive trenching data.

As part of Power's due diligence, an assessment of the available drilling data has uncovered multiple very high-grade gallium intersections from previous drilling. The grades have been recorded as high as **232.7g/t Ga₂O₃** (gallium oxide) in a 1m sample MN-4098 from drillhole MN-RC-004. In total, there are **289 analyses grading higher than 50g/t Ga₂O₃** (see Table 2), with highlight results including:


- 164.1g/t Ga₂O₃ over 14m from surface in drillhole MN-RC-0004
 - Incl. 232.7g/t Ga_2O_3 over 1m from 10m
 - incl. 215.3g/t Ga_2O_3 over 2m from 3m
 - incl. 217.5g/t Ga₂O₃ over 2m from 9m
- 167.g/t Ga₂O₃ over 2m from surface in MN-RC-0005
- $159.9g/t \text{ Ga}_2\text{O}_3$ over 3m from 25m in MN-RC-0010
- 138.1g/t Ga_2O_3 over 3m from surface in MN-RC-0006
- 137.4g/t Ga₂O₃ over 4m from 34m in MN-RC-0015
 - Incl. $208g/t Ga_2O_3$ over 1m from 36m
- 56.4g/t Ga₂O₃ over 25m from surface to EOH in MN-AC-0002
- 53.4g/t Ga₂O₃ over 50m from **surface to EOH** in MN-RC-0006
 - incl. 71.3g/t Ga₂O₃ over 15m from surface

These gallium intersections are within the central calcium-magnesium rich carbonatite zone of the Santa Anna Project (Figure 1). Mapping of this area is based on limited soil sampling and is the most densely drilled area of the Santa Anna alkaline complex. Importantly, there are drillholes containing at least one sample with 50g/t Ga₂O₃ or greater over most of the alkaline complex (refer figure 1).

Gallium potential at Santa Anna Project commentary

During the due diligence at the Santa Anna Project, Power has identified multiple high-grade gallium intersections from historical drilling through further interrogation of available exploration data. These gallium results complement Power's previous identification of the Project's significant REE potential as announced in the ASX announcement 22 April 2025. The Project has a comprehensive drilling database containing detailed information on 192 drillholes covering 5,377 metres in total, 196 surface geochemical samples and extensive trenching data.

Figure 1. Santa Anna Project plan showing significant higher-grade gallium results from previous drilling. All drillholes containing at least one sample with 50g/t Ga₂O₃ or greater is show as green dots.

There are drillholes containing at least one sample with 50g/t Ga₂O₃ or greater (Table 2) over most of the alkaline complex (green dots in Figure 1), with the highest gallium intersections above the interpreted calcium-magnesium rich carbonate phase. The possibility of further calcium-magnesium-rich carbonatite zones in unsampled or undrilled area within the Project area is currently unknown. This provides an opportunity for Power to define additional calcium-magnesium rich carbonatite zones through its targeted exploration programs provided it exercises the option and completes the acquisition.

Power is primarily focused on the niobium prospectivity of the Santa Anna Project and will conduct a targeted drilling program as part of its due diligence for acquiring the Project, aiming to confirm an Exploration Target as defined in the 2012 JORC Code.

Depending on the metallurgy, there is potential for separate recovery of niobium, REE and gallium during processing in any future mining operation at the Project, which could result in REE and gallium credits, significantly enhancing the economic viability of a future mining and processing operation at the Santa Anna Project.

Power has a binding letter of intent for an option to acquire the Santa Anna project; a high-grade, niobium carbonatite-hosted asset with niobium drilling results up to 3.36% (or 33,360 ppm) Nb₂O₅.

Upon exercising the option and completion of the acquisition, Power will hold an alkaline complex, spanning approximately 2.5km from west to east. Carbonatite niobium projects are highly sought after globally, and Power views this to be a rare opportunity to acquire such a large carbonatite field.

Santa Anna Project Summary

The Santa Anna Alkaline Complex (SAAC) circular intrusion, approximately 2.5km in diameter, is held under ANM tenements 861.559/2021 and 860.896/2024 which cover 17.2km² - with the complex in the centre of the Project area.

The Project is 40km north of Nova Crixás and 335km northwest of the Brazilian capital, Brasilia, providing convenient access to contractors and workforce. The tenement area sits on flat, cleared farmland with established local relationships in place. It is easily accessible directly by highway GO-156 and is also proximal to established power infrastructure.

Geologically the Santa Anna target intrusion is classified as a carbonatite alkaline complex and it is situated in the northern extent of the Goiás Alkaline Province (GAP), an area in central Brazil characterised by Late Cretaceous alkaline magmatism along the northern margin of the Paraná Basin.

The Project area hosts a weathered cap of outcropping carbonatite enriched with niobium and phosphate, and prospective for REE and gallium mineralisation especially in the upper 40m clay saprolite), This complex comprises a variety of alkaline igneous rocks that are plutonic in nature and rich in key minerals such as calcium, magnesium, phosphate, and potassium.

The Santa Anna Project has undergone significant recent exploration for phosphate, resulting in a detailed database containing exploration drilling data and surface geochemistry sampling is available for thorough analysis by Power during its due diligence process.

To date, 192 drillholes have been completed at the Santa Anna Project, uncovering impressive niobium (Nb₂O₅) grades reaching up to 3.36%. The geological characteristics observed in each drillhole were consistent revealing up to 30 metres of soil and saprolite, overlying carbonatite zones that include a combination of magnetite, apatite, dolomite, ferro-dolomite, ankerite, and siderite.

The levels of uranium and thorium at the Santa Anna Project are low, with average concentrations of 4.8g/t uranium and 28.8g/t thorium across all drillholes, potentially simplifying potential mineral processing and alleviating environmental concerns in any future mining operation.

The Santa Anna Project and the Letter of Intent (LoI) for the option to acquire the Project are discussed in detail in the ASX announcement of 16 April 2025. This announcement includes a comprehensive summary of the transaction terms. Additionally, more information on the Rare Earth Elements (REE) potential of the Project can be found in the ASX announcement of 22 April 2025.

Authorised for release by the Board of Power Minerals Limited.

-ENDS-

For further information please contact:

Power Minerals Limited E: <u>admin@powerminerals.com.au</u> T: +61 8 6385 2299

Additional information is available at www.powerminerals.com.au

ABOUT POWER MINERALS LIMITED

Power Minerals Limited is an ASX-listed exploration and development company. We are focused on transforming our lithium resources in Argentina, exploring our promising niobium and other critical mineral assets in Brazil, and maximizing value from our Australian assets.

Competent Persons Statement

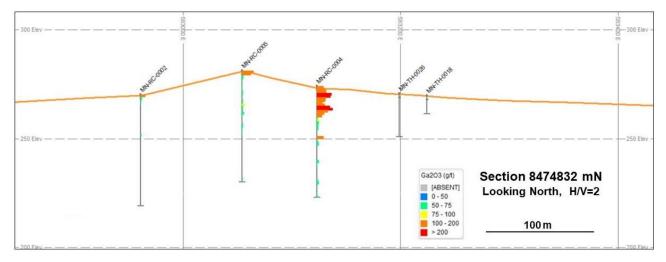
The information in this announcement that relates to exploration results in respect of the Santa Anna Project in Brazil is based on and fairly represents information and supporting documentation prepared by Steven Cooper, FAusIMM (No 108265). Mr Cooper is the Exploration Manager and is a full-time employee of the Company. Mr Cooper has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Cooper consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears.

Compliance Statement

With reference to previously reported Exploration Results, the Company confirms that it is not aware of any new information as at the date of this announcement that materially affects the information included in the previous market announcement. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Forward Looking Statements

This announcement may contain forward-looking statements. These statements relate to the Company's expectations, beliefs, intentions or strategies regarding the future. These statements can be identified by the use of words like "anticipate", "believe", "intend", "estimate", "expect", "may", "plan", "project", "will", "should", "seek" and similar words or expressions containing same. These forward-looking statements reflect the Company's views and assumptions with respect to future events as of the date of this release and are subject to a variety of unpredictable risks, uncertainties, and other unknowns. Actual and future results and trends could differ materially from those set forth in such statements due to various factors, many of which are beyond our ability to control or predict. These include, but are not limited to, risks or uncertainties associated with the acquisition and divestment of projects (including risks associated with completing due diligence and, if favourable results are obtained, proceeding with the acquisition of the Santa Anna Project), joint venture and other contractual risks, metal prices, exploration, development and operating risks, competition, production risks, sovereign risks, regulatory risks including environmental regulation and liability and potential title disputes, availability and terms of capital and general economic and business conditions.



Given these uncertainties, no one should place undue reliance on any forward-looking statements attributable to the Company, or any of its affiliates or persons acting on its behalf. Subject to any continuing obligations under applicable law, the Company disclaims any obligation or undertaking to disseminate any updates or revisions to any forward-looking statements in this announcement to reflect any change in expectations in relation to any forward-looking statements or any change in events, conditions or circumstances on which any such statement is based.

Figure 2. Santa Anna Project location map in Goiás State, central Brazil.

Figure 3. Cross sections 300 metres long across the centre of the Santa Anna alkaline Complex showing individual sample Ga₂O₃ results (Table 2). Drillhole collar information is provided in Table 1.

Table 1. All individual drillholes from the Santa Anna Project containing analyses over 50g/t Ga₂O₃. Drillholes with AC prefix are aircore, DD prefix are diamond core, RC prefix are reverse circulation, and TH prefix are auger holes.

Drillhole	Easting	Northing	RL	Depth	Az	Dip	Drillhole	Easting	Northing	RL	Depth	Az	Dip
MN-AC-0002	583094.9	8474143.3	266.4	25	0	-90	MN-AC-0120	582525.8	8474992.8	261.2	28	0	-90
MN-AC-0003	583041.1	8474139.9	265.9	22	0	-90	MN-DD-0001	583388.2	8474758.6	269.8	68	250	-70
MN-AC-0004	582935.6	8474136.2	265.8	29	0	-90	MN-DD-0005	582690.5	8474801.4	266.8	60.15	90	-65
MN-AC-0005	583038.1	8474231.9	265.5	30	0	-90	MN-DD-0006	582867.4	8474775.5	272.7	61.1	90	-70
MN-AC-0025	583528.8	8474786.6	265.4	17	0	-90	MN-DD-0012	582319.9	8474757.7	261.3	67.3	90	-70
MN-AC-0028	583427.2	8474450.7	268.0	20	0	-90	MN-DD-0013	583110.0	8475546.5	252.6	42.15	180	-70
MN-AC-0029	583430.6	8474342.7	267.3	28	0	-90	MN-DD-0014	582318.4	8473979.8	260.8	57.4	90	-70
MN-AC-0033	583815.7	8474711.6	261.8	27	0	-90	MN-DD-0015	582194.9	8474348.8	259.6	60.15	90	-70
MN-AC-0034	583828.2	8474489.6	265.0	29	0	-90	MN-DD-0017	583723.3	8475242.8	255.5	71.3	180	-70
MN-AC-0035	583421.7	8474167.0	249.5	26	0	-90	MN-RC-0001	582904.6	8474792.7	269.4	51	0	-90
MN-AC-0042	583422.6	8473952.7	260.0	19	0	-90	MN-RC-0002	582961.3	8474836.7	270.1	51	0	-90
MN-AC-0047	582925.8	8475492.6	256.1	30	0	-90	MN-RC-0003	583008.8	8474906.7	263.2	51	0	-90
MN-AC-0048	582722.4	8475495.6	256.2	32	0	-90	MN-RC-0004	583123.5	8474826.1	273.9	51	0	-90
MN-AC-0049	582818.4	8475403.4	258.0	32	0	-90	MN-RC-0005	583054.3	8474836.3	281.0	51	0	-90
MN-AC-0050	582926.6	8475294.4	258.5	32	0	-90	MN-RC-0006	583086.0	8474768.9	281.4	50	0	-90
MN-AC-0054	582823.6	8474844.2	267.0	19	0	-90	MN-RC-0007	583068.9	8474911.7	267.5	50	0	-90
MN-AC-0065	583020.6	8475292.5	256.3	30	0	-90	MN-RC-0008	583325.1	8474681.8	263.8	51	0	-90
MN-AC-0075	582718.5	8475400.9	258.4	30	0	-90	MN-RC-0009	583140.2	8474656.9	278.2	51	0	-90
MN-AC-0086	582825.0	8475191.5	260.9	22	0	-90	MN-RC-0010	583112.0	8474789.8	283.1	51	0	-90
MN-AC-0087	582823.8	8475593.8	254.7	22	0	-90	MN-RC-0014	583015.0	8474700.1	280.4	51	0	-90
MN-AC-0088	582824.6	8474844.2	267.0	18	0	-90	MN-RC-0015	582814.3	8474757.7	265.6	51	0	-90
MN-AC-0089	583840.7	8474243.7	263.7	22	0	-90	MN-RC-0016	582835.9	8474712.4	264.6	51	0	-90
MN-AC-0090	582724.7	8476190.7	243.4	18	0	-90	MN-TH-0010	583121.3	8475391.8	250.3	7.95	0	-90
MN-AC-0108	584324.3	8475187.8	253.3	30	0	-90	MN-TH-0011	583124.1	8475419.1	250.5	8.25	0	-90
MN-AC-0111	583921.5	8473992.3	262.0	20	0	-90	MN-TH-0012	583124.7	8475364.2	249.9	8.5	0	-90
MN-AC-0118	582523.4	8475359.3	257.0	29	0	-90							

Table 2. All individual drillhole samples from the Santa Anna Project with analyses over 50g/t Ga₂O₃.

Drillhole	From	То	SAMPLE	Ga ₂ O ₃	Drillhole	From	То	SAMPLE	Ga ₂ O ₃	Drillhole	From	То	SAMPLE	Ga ₂ O ₃
MN-AC-0002	5	7	MN-0224	60.1	MN-RC-0001	2	3	MN-3917	59.7	MN-RC-0007	6	7	MN-4264	108.1
MN-AC-0002	7	9	MN-0225	67.2	MN-RC-0001	3	4	MN-3919	51.1	MN-RC-0007	7	8	MN-4265	63.6
MN-AC-0002	9	11	MN-0226	76.5	MN-RC-0001	4	5	MN-3920	52.2	MN-RC-0007	8	9	MN-4266	69.0
MN-AC-0002	11	13	MN-0227	69.5	MN-RC-0001	8	9	MN-3925	77.8	MN-RC-0007	9	10	MN-4267	59.3
MN-AC-0002	13	15	MN-0228	57.5	MN-RC-0001	9	10	MN-3926	65.1	MN-RC-0008	0	1	MN-4313	71.0
MN-AC-0002	15	17	MN-0229	57.3	MN-RC-0001	10	11	MN-3927	67.1	MN-RC-0008	1	2	MN-4314	68.0
MN-AC-0002	17	19	MN-0230	55.5	MN-RC-0001	11	12	MN-3928	62.0	MN-RC-0008	2	3	MN-4315	76.8
MN-AC-0002	21	23	MN-0232	50.1	MN-RC-0001	12	13	MN-3929	50.5	MN-RC-0008	3	4	MN-4316	63.0
MN-AC-0002	23	25	MN-0233	52.7	MN-RC-0001	13	14	MN-3930	53.5	MN-RC-0008	6	7	MN-4320	58.3
MN-AC-0003	2	4	MN-0235	50.1	MN-RC-0001	15	16	MN-3933	77.0	MN-RC-0008	7	8	MN-4321	65.5
MN-AC-0003	6	8	MN-0237	58.7	MN-RC-0001	21	22	MN-3939	55.4	MN-RC-0008	8	9	MN-4322	52.4
MN-AC-0003	8	10	MN-0238	60.6	MN-RC-0002	0	1	MN-3972	105.7	MN-RC-0008	12	13	MN-4326	77.0
MN-AC-0003	12	14	MN-0240	60.8	MN-RC-0002	1	2	MN-3973	65.7	MN-RC-0008	13	14	MN-4328	61.6
MN-AC-0003	14	16	MN-0241	56.2	MN-RC-0002	2	3	MN-3974	56.5	MN-RC-0008	15	16	MN-4330	61.2
MN-AC-0003	16	18	MN-0242	56.6	MN-RC-0002	3	4	MN-3975	56.2	MN-RC-0008	16	17	MN-4331	87.4
MN-AC-0003	18	20	MN-0243	52.0	MN-RC-0002	4	5	MN-3977	53.8	MN-RC-0008	22	23	MN-4337	75.1
MN-AC-0003	20	22	MN-0244	53.0	MN-RC-0002	18	19	MN-3993	60.0	MN-RC-0009	24	25	MN-4396	56.9
MN-AC-0004	6	8	MN-0249	58.7	MN-RC-0003	0	1	MN-4030	105.0	MN-RC-0009	29	30	MN-4402	115.7
MN-AC-0004	8	10	MN-0250	57.1	MN-RC-0003	1	2	MN-4031	67.5	MN-RC-0009	30	31	MN-4403	98.4
MN-AC-0004	10	12	MN-0251	56.5	MN-RC-0003	9	10	MN-4040	53.9	MN-RC-0009	33	34	MN-4406	69.5
MN-AC-0004	12	14	MN-0252	52.8	MN-RC-0003	21	22	MN-4054	62.8	MN-RC-0009	34	35	MN-4407	65.9
MN-AC-0004	16	18	MN-0254	50.5	MN-RC-0003	44	45	MN-4079	53.9	MN-RC-0009	35	36	MN-4408	87.9
MN-AC-0005	2	4	MN-0263	51.6	MN-RC-0003	45	46	MN-4080	89.8	MN-RC-0009	36	37	MN-4409	93.6
MN-AC-0005	4	6	MN-0264	59.1	MN-RC-0004	0	1	MN-4087	130.3	MN-RC-0009	37	38	MN-4410	68.4
MN-AC-0005	6	8	MN-0265	56.2	MN-RC-0004	1	2	MN-4088	156.1	MN-RC-0009	39	40	MN-4413	50.9
MN-AC-0005	8	10	MN-0266	56.5	MN-RC-0004	2	3	MN-4089	159.4	MN-RC-0009	40	41	MN-4414	60.1
MN-AC-0005	10	12	MN-0267	54.6	MN-RC-0004	3	4	MN-4090	223.3	MN-RC-0009	41	42	MN-4415	74.6
MN-AC-0005	12	14	MN-0268	51.8	MN-RC-0004	4	5	MN-4092	207.3	MN-RC-0009	43	44	MN-4417	56.2
MN-AC-0025	6	8	MN-0651	58.1	MN-RC-0004	5	6	MN-4093	151.0	MN-RC-0009	44	45	MN-4418	81.9
MN-AC-0028	8	10	MN-0705	62.9	MN-RC-0004	6	7	MN-4094	149.7	MN-RC-0009	45	46	MN-4420	61.6

ASX ANNOUNCEMENT

Page 9 of 19

Drillhole	From	То	SAMPLE	Ga ₂ O ₃	Drillhole	From	То	SAMPLE	Ga ₂ O ₃	Drillhole	From	То	SAMPLE	Ga ₂ O ₃
MN-AC-0028	14	15	MN-0708	50.1	MN-RC-0004	7	8	MN-4095	118.7	MN-RC-0009	46	47	MN-4421	83.2
MN-AC-0029	6	8	MN-0718	53.2	MN-RC-0004	8	9	MN-4096	142.1	MN-RC-0009	47	48	MN-4422	73.5
MN-AC-0029	8	10	MN-0719	53.1	MN-RC-0004	9	10	MN-4097	202.2	MN-RC-0009	48	49	MN-4423	70.0
MN-AC-0033	14	16	MN-0785	83.3	MN-RC-0004	10	11	MN-4098	232.7	MN-RC-0009	49	50	MN-4424	51.6
MN-AC-0034	8	11	MN-0796	55.6	MN-RC-0004	11	12	MN-4100	176.9	MN-RC-0009	50	51	MN-4425	67.5
MN-AC-0035	8	10	MN-0821	50.1	MN-RC-0004	12	13	MN-4101	137.4	MN-RC-0010	0	1	MN-4426	67.2
MN-AC-0035	12	13	MN-0823	60.1	MN-RC-0004	13	14	MN-4102	109.8	MN-RC-0010	1	2	MN-4427	98.0
MN-AC-0035	13	14	MN-0824	56.7	MN-RC-0004	14	15	MN-4103	56.6	MN-RC-0010	2	3	MN-4429	80.2
MN-AC-0042	14	16	MN-0943	53.1	MN-RC-0004	15	16	MN-4104	75.0	MN-RC-0010	3	4	MN-4430	72.7
MN-AC-0047	6	7	MN-1788	54.4	MN-RC-0004	16	17	MN-4105	70.0	MN-RC-0010	4	5	MN-4431	51.1
MN-AC-0047	7	9	MN-1789	54.0	MN-RC-0004	17	18	MN-4106	64.5	MN-RC-0010	5	6	MN-4432	57.3
MN-AC-0048	6	8	MN-1806	52.8	MN-RC-0004	18	19	MN-4108	64.4	MN-RC-0010	6	7	MN-4433	89.4
MN-AC-0048	8	10	MN-1807	55.2	MN-RC-0004	19	20	MN-4109	63.0	MN-RC-0010	7	8	MN-4434	147.5
MN-AC-0049	5	7	MN-1824	51.5	MN-RC-0004	23	24	MN-4113	129.2	MN-RC-0010	8	9	MN-4435	156.9
MN-AC-0049	7	9	MN-1826	51.6	MN-RC-0004	25	26	MN-4115	67.6	MN-RC-0010	9	10	MN-4436	55.1
MN-AC-0050	6	7	MN-1843	50.4	MN-RC-0004	26	27	MN-4116	74.1	MN-RC-0010	10	11	MN-4437	94.8
MN-AC-0050	7	9	MN-1844	55.0	MN-RC-0004	34	35	MN-4125	71.9	MN-RC-0010	11	12	MN-4438	74.5
MN-AC-0054	6	8	MN-1920	52.8	MN-RC-0004	35	36	MN-4127	55.2	MN-RC-0010	12	13	MN-4440	64.8
MN-AC-0065	4	6	MN-2155	53.0	MN-RC-0004	36	37	MN-4128	54.8	MN-RC-0010	13	14	MN-4441	55.1
MN-AC-0075	8	10	MN-2535	53.9	MN-RC-0004	43	44	MN-4136	64.9	MN-RC-0010	14	15	MN-4442	52.3
MN-AC-0086	4	6	MN-2754	68.6	MN-RC-0004	44	45	MN-4137	71.5	MN-RC-0010	16	17	MN-4444	51.2
MN-AC-0086	6	8	MN-2755	65.6	MN-RC-0004	46	47	MN-4139	50.4	MN-RC-0010	17	18	MN-4445	68.2
MN-AC-0086	8	10	MN-2756	51.2	MN-RC-0004	49	50	MN-4142	51.8	MN-RC-0010	18	19	MN-4446	60.2
MN-AC-0087	4	6	MN-2767	54.6	MN-RC-0004	50	51	MN-4143	56.7	MN-RC-0010	19	20	MN-4447	70.0
MN-AC-0087	6	8	MN-2768	58.1	MN-RC-0005	0	1	MN-4145	182.5	MN-RC-0010	20	21	MN-4449	77.6
MN-AC-0087	8	10	MN-2769	61.6	MN-RC-0005	1	2	MN-4146	151.4	MN-RC-0010	21	22	MN-4450	71.4
MN-AC-0087	10	12	MN-2770	54.3	MN-RC-0005	2	3	MN-4147	64.8	MN-RC-0010	23	24	MN-4452	64.0
MN-AC-0087	14	16	MN-2772	51.3	MN-RC-0005	3	4	MN-4148	59.1	MN-RC-0010	24	25	MN-4453	67.7
MN-AC-0088	4	6	MN-2781	56.2	MN-RC-0005	4	5	MN-4149	55.8	MN-RC-0010	25	26	MN-4454	119.2
MN-AC-0088	6	8	MN-2782	59.1	MN-RC-0005	7	8	MN-4152	50.5	MN-RC-0010	26	27	MN-4455	184.2
MN-AC-0088	8	10	MN-2783	50.5	MN-RC-0005	8	9	MN-4153	54.6	MN-RC-0010	27	28	MN-4456	176.4
MN-AC-0089	4	5	MN-2792	53.4	MN-RC-0005	9	10	MN-4155	56.3	MN-RC-0010	28	29	MN-4457	89.4

ASX	ANNO	UNCEMENT
AOA		

Page 10 of 19

Drillhole	English				
Drinnole	From	То	SAMPLE	Ga ₂ O ₃	Drillhole
MN-AC-0089	5	7	MN-2793	62.1	MN-RC-000
MN-AC-0089	7	9	MN-2794	69.0	MN-RC-000
MN-AC-0089	9	11	MN-2795	61.0	MN-RC-000
MN-AC-0089	11	13	MN-2796	56.3	MN-RC-000
MN-AC-0089	13	15	MN-2797	50.5	MN-RC-000
MN-AC-0090	0	2	MN-2802	54.3	MN-RC-000
MN-AC-0090	12	14	MN-2809	54.3	MN-RC-000
MN-AC-0108	11	12	MN-3247	51.5	MN-RC-000
MN-AC-0111	7	8	MN-3345	50.1	MN-RC-000
MN-AC-0111	10	11	MN-3348	52.8	MN-RC-000
MN-AC-0118	6	7	MN-3563	50.3	MN-RC-000
MN-AC-0118	7	8	MN-3564	52.0	MN-RC-000
MN-AC-0118	8	9	MN-3565	50.9	MN-RC-000
MN-AC-0118	9	10	MN-3566	60.5	MN-RC-000
MN-AC-0120	5	6	MN-3628	50.0	MN-RC-000
MN-AC-0120	6	7	MN-3629	67.6	MN-RC-000
MN-AC-0120	7	8	MN-3630	60.8	MN-RC-000
MN-AC-0120	8	9	MN-3631	57.8	MN-RC-000
MN-AC-0120	9	10	MN-3632	52.8	MN-RC-000
MN-DD-0001	5.4	6.1	MN-0994	50.3	MN-RC-000
MN-DD-0001	6.1	7	MN-0995	54.3	MN-RC-000
MN-DD-0005	8	9.7	MN-1188	50.5	MN-RC-000
MN-DD-0006	23	24	MN-1257	54.2	MN-RC-000
MN-DD-0012	7.5	9.5	MN-1532	65.2	MN-RC-000
MN-DD-0012	9.5	11.5	MN-1533	64.1	MN-RC-000
MN-DD-0012	11.5	13.65	MN-1535	56.7	MN-RC-000
MN-DD-0013	6	8	MN-1573	57.4	MN-RC-000
MN-DD-0013	12	14	MN-1577	51.8	MN-RC-000
MN-DD-0014	18.3	20	MN-1606	57.1	MN-RC-000
MN-DD-0014	20	21.45	MN-1607	51.6	MN-RC-000
MN-DD-0014	24.6	26	MN-1610	53.1	MN-RC-000
MN-DD-0015	6.5	8	MN-1634	50.5	MN-RC-000
MN-DD-0017	6	8	MN-1708	55.8	MN-RC-000
MN-RC-0001	0	1	MN-3915	53.8	MN-RC-000
MN-RC-0001	1	2	MN-3916	77.3	MN-RC-000

Drillhole	From	То	SAMPLE	Ga ₂ O ₃
MN-RC-0005	10	11	MN-4156	59.1
MN-RC-0005	13	14	MN-4159	57.4
MN-RC-0005	14	15	MN-4160	60.1
MN-RC-0005	15	16	MN-4161	80.4
MN-RC-0005	16	17	MN-4162	62.0
MN-RC-0005	17	18	MN-4164	57.0
MN-RC-0005	18	19	MN-4165	60.4
MN-RC-0005	19	20	MN-4166	74.6
MN-RC-0005	20	21	MN-4167	50.3
MN-RC-0005	24	25	MN-4171	57.8
MN-RC-0005	25	26	MN-4172	57.0
MN-RC-0005	26	27	MN-4174	54.3
MN-RC-0005	27	28	MN-4175	53.2
MN-RC-0005	28	29	MN-4176	52.7
MN-RC-0005	49	50	MN-4199	60.4
MN-RC-0006	0	1	MN-4202	147.6
MN-RC-0006	1	2	MN-4203	152.7
MN-RC-0006	2	3	MN-4204	114.0
MN-RC-0006	3	4	MN-4205	91.7
MN-RC-0006	5	6	MN-4207	83.1
MN-RC-0006	6	7	MN-4208	51.5
MN-RC-0006	9	10	MN-4212	55.9
MN-RC-0006	10	11	MN-4213	62.1
MN-RC-0006	11	12	MN-4214	55.4
MN-RC-0006	12	13	MN-4215	55.1
MN-RC-0006	14	15	MN-4217	63.7
MN-RC-0006	28	29	MN-4233	73.9
MN-RC-0006	29	30	MN-4234	70.4
MN-RC-0006	36	37	MN-4242	50.8
MN-RC-0006	37	38	MN-4243	80.1
MN-RC-0006	39	40	MN-4245	103.8
MN-RC-0006	42	43	MN-4248	159.8
MN-RC-0006	43	44	MN-4250	89.5
MN-RC-0006	44	45	MN-4251	76.6
MN-RC-0007	0	1	MN-4257	50.7

Drillhole	From	То	SAMPLE	Ga ₂ O ₃
MN-RC-0010	29	30	MN-4459	63.7
MN-RC-0010	30	31	MN-4460	72.9
MN-RC-0014	3	4	MN-4651	50.4
MN-RC-0014	4	5	MN-4652	54.0
MN-RC-0014	5	6	MN-4653	53.1
MN-RC-0014	6	7	MN-4654	53.0
MN-RC-0014	7	8	MN-4656	53.9
MN-RC-0014	8	9	MN-4657	51.9
MN-RC-0014	10	11	MN-4659	56.1
MN-RC-0014	11	12	MN-4660	53.1
MN-RC-0014	12	13	MN-4661	50.9
MN-RC-0015	0	1	MN-4705	67.3
MN-RC-0015	1	2	MN-4706	58.2
MN-RC-0015	29	30	MN-4737	58.2
MN-RC-0015	32	33	MN-4740	59.3
MN-RC-0015	33	34	MN-4742	61.0
MN-RC-0015	34	35	MN-4743	118.3
MN-RC-0015	35	36	MN-4744	100.1
MN-RC-0015	36	37	MN-4745	208.4
MN-RC-0015	37	38	MN-4746	122.6
MN-RC-0015	38	39	MN-4747	54.7
MN-RC-0016	0	1	MN-4764	51.3
MN-RC-0016	1	2	MN-4765	95.7
MN-RC-0016	2	3	MN-4766	74.6
MN-RC-0016	3	4	MN-4767	84.3
MN-RC-0016	4	5	MN-4768	84.0
MN-RC-0016	6	7	MN-4771	60.2
MN-RC-0016	7	8	MN-4772	52.2
MN-TH-0010	2	3	MN-2321	50.4
MN-TH-0011	3	4	MN-2424	50.8
MN-TH-0012	1	2	MN-2431	52.7
MN-TH-0012	2	3	MN-2432	53.1
MN-TH-0012	3	4	MN-2434	52.4

JORC Code, 2012 Edition – Table 1 report template

Section 1. Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information. 	 The niobium, gallium and rare earth element (REE) exploration results presented in this Santa Anna Project ASX release have been prepared using the exploration data collected by Empresa de Desenvolvimento e Mineração (EDEM) during the period 2002-2023 over the project area. EDEM's exploration was aimed to produce multi-nutrient phosphate from the altered carbonatite. 192 drillholes for a total of 5,377.45 metres have been completed using four different drilling techniques: reverse circulation (RC: 8.3% of drillholes), diamond core (DD: 8.9%), mechanical auger (TH: 19.8%), and aircore (AC: 63.0%). EDEM has provided analytical results for 4,075 drillhole samples, with the majority (51%) from the aircore drilling. Diamond core sampling was conducted with careful consideration of lithological boundaries, guaranteeing that samples are collected up to major contacts rather than across them. The core size used was either HQ or NQ, with sample intervals varying from a minimum of 0.55 metres to a maximum of 3 metres. Following a cut along a designated line, half of the core was analysed. Geochemical analyses were completed by commercial laboratory SGS Geosol utilising lithium metaborate fusion followed by ICP-OES or ICP-MS to identify major oxides and 41 trace elements. All drilling provided a continuous sample of the mineralized zone. The mineralisation relevant to this report has been evaluated using quantitative laboratory analysis methods that are outlined in more detail in the following sections.
Drilling techniques	• Drill type (eg. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 EDEM has employed several drilling techniques throughout the Santa Anna Project permit. A total of 121 aircore drillholes for 3040.1 metres. All were drilled vertically and the deepest drillhole (MN-AC-0051) reached a depth of 33 metres. The shallowest was MN-AC-0015 at 4 metres, Seventeen diamond core drillholes were completed in total, consisting of 14 HQ/NQ holes (including 3 that are exclusively HQ), totalling 1018.75 metres. The majority of these drillholes were drilled at an inclination of -70 degrees, with one drillhole at -65 degrees (MN-DD-0005) and another at -60 degrees (MN-DD-0010). The deepest cored drillhole reached 72.6 metres (MN-DD-0010).

Criteria	JORC Code explanation	Commentary
		 Sixteen (16) standard reverse circulation (RC) drillholes for 822 metres. All were vertical and 51 metres in depth except MN-RC-0006 and MN-RC-0007 at 50 metres and MN-RC-0011 at 45 metres. Thirty-eight (38) auger holes, totalling 510.6 metres. All were drilled vertically with the deepest reaching 20 metres (Drillhole MN-TH-0025). A powered (52kW) SD-400 auger with twenty (20) cm wide auger bit was used. No downhole surveys are reported, but this is yet to be confirmed. Most drillholes (91.1%) are vertical and the deepest angled hole (MN-DD-0010) is 72.6 metres.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 For diamond core drillholes, the actual length of core recovered was compared to the total recorded drill length for that run. Any variation was recorded as a recovery percentage. A recovery percentage was computed by comparing the covered weights to the calculated weights after accounting for drillhole diameter/volume and an assumed density. According to the EDEM drilling contract, this recovery (R) was tracked on-site during the drilling process. The drilling contractor was required to twin the hole when the total sample recovery for the drillhole was R<70%. The powered helical auger was advanced 0.2 to 0.3 metres at a time, after which side contamination was removed before the next advance could proceed. These advances were combined to form a one metre-sample interval.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Core samples were not geotechnically logged as the mineralisation is not structurally controlled. All drillholes were fully geologically logged with the necessary detail to support mining and metallurgical research as well as precise mineral resource estimation. Representative material has been retained to support further studies as required. Drillhole logging was qualitative in nature. All drillhole samples from all drill types were photographed.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling 	 Diamond core was cut and the half core submitted for analysis. If material was soft (clay-rich), care was taken to use a knife and spoon for halving the core, ensuring minimal loss of material. The aircore and RC samples were rotary split and then reduced to a representative 3kg for additional sub-sampling and analyses. All drillhole material was dry. The powered auger generated substantial one-metre samples weighing less than 150kg. These samples were then laid out on canvas, thoroughly mixed for homogenization, and subjected to quartering to achieve the required sample size.

Criteria	JORC Code explanation	Commentary
	 stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Samples were mostly all drilled dry due to the shallow depth and the aircore/RC drilling method air pressure naturally holding back any possible water. Between samples the hose and cyclone were systematically cleared. EDEM company representatives were required to monitor any excessive dust escaping from the top of the cyclone or the hoses. If any loss was observed, they were to document it and take corrective action. Sample size is considered appropriate for the grain size of the sample material.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, handheld XRF instruments, etc, the used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (lack of bias) and precision have been established. 	conducting a series of round robin analyses to validate two in-house standards: the higher- grade (Alto) and the lower-grade (Baixo). The validation process involved four laboratories and included ten duplicate samples of each standard type. The sole parameter analysed in both standard round robin analyses was P_2O_5 . Examination of the drilling QC samples shows Alto standard (n=37) has an average of 12.9g/t and SD 1.4g/t Ga, the Baixo standard (n=36) an average of 20.4g/t and SD 1.6g/t Ga and the blank (n=66) has an average of 0.9g/t with SD 0.8g/t Ga.

Criteria	JORC Code explanation	Comm	entary						
		17.1)	ICP95A						
		Dete	erminação por l	Fusão	com Metaborate	o de Lí	tio - ICP OES		
			3 0,01 - 75 (%)	Ba	10 - 100000 (ppm)		0,01 - 60 (%)	Cr203	3 0,01 - 10 (%)
		Fe20	3 0,01 - 75 (%)	K20	0,01 - 25 (%)	MgO	0,01 - 30 (%)	MnO	0,01 - 10 (%)
		Na20	0,01 - 30 (%)	P205	0,01 - 25 (%)	SiO2	0,01 - 90 (%)	Sr	10 - 100000 (ppm)
		TiO2	0,01 - 25 (%)	۷	5 - 10000 (ppm)	Zn	5 - 10000 (ppm)	Zr	10 - 100000 (ppm
		17.2)	IMS95A						
		Dete	erminação por l	Fusão	com Metaborate	o de Lí	tio - ICP MS		
		Ce	0,1 - 10000 (ppm)	Co	0,5 - 10000 (ppm)	Cs	0,05 - 1000 (ppm)	Cu	5 - 10000 (ppm)
		Dy	0,05 - 1000 (ppm)	Er	0,05 - 1000 (ppm)	Eu	0,05 - 1000 (ppm)	Ga	0,1 - 10000 (ppn
		Gd	0,05 - 1000 (ppm)	Hf	0,05 - 500 (ppm)	Ho	0,05 - 1000 (ppm)	La	0,1 - 10000 (ppr
		Lu	0,05 - 1000 (ppm)	Mo	2 - 10000 (ppm)	Nb	0,05 - 1000 (ppm)	Nd	0,1 - 10000 (ppr
		Ni	5 - 10000 (ppm)	Pr	0,05 - 1000 (ppm)	Rb	0,2 - 10000 (ppm)	Sm	0,1 - 1000 (ppm
		Sn	0,3 - 1000 (ppm)	Та	0,05 - 10000 (ppm)	Tb	0,05 - 1000 (ppm)	Th	0,1 - 10000 (ppr
		TI	0,5 - 1000 (ppm)	Tm	0,05 - 1000 (ppm)	U	0,05 - 10000 (ppm)	w	0,1 - 10000 (ppr
		Y	0,05 - 10000 (ppm)	Yb	0,1 - 1000 (ppm)				
			PHY01E						
		LOI	(Loss on ignition -45 - 100 (%)	on) - P	erda ao fogo po	r calci	nação da amos	tra a 1	000°C
		 Determinação de Perda ao Fogo (LOI) por Gravimetria - 1000°C Perda ao fogo por calcinação a 1000°C. 							
		and emp neit	Standard (PAD). T bloyed, known as A	he auge Ito (wit	control samples in er samples utilized o h a higher P ₂ O ₅ gra Ga or REE as these v	only dup de) and	blicates. Two in-ho Baixo (with a lowe	use sta er grade	ndards were), although

Criteria	JORC Code explanation	Commentary
		 The combined standards, blanks, and blind duplicates totalled 5.4% of the drillholes samples submitted. The reported values were all within acceptable range. The quality control sampling is still undergoing thorough examination and evaluation as PNN continues the due diligence.
		 The EDEM data has successfully been imported into the secure Power Minerals relational database. This automated process has verified several key aspects of the data set, and we are committed to ongoing validation of the information.
		 The only adjustments utilised with the assay data is for Ga, Nb and REE to be converted to stoichiometric oxides using standard conversion factors (see Advanced Analytical Centre, James Cook University web site). This includes Ga₂O₃ = Ga*1.3442.
		Power Minerals uses the following definitions:
		 TREO (Total Rare Earth Oxides) = [La₂O₃] + [CeO₂] + [Pr₆O₁₁] + [Nd₂O₃] + [Sm₂O₃] + [Eu₂O₃] + [Gd₂O₃] + [Tb₄O₇] + [Dy₂O₃] + [Ho₂O₃] + [Er₂O₃] + [Tm₂O₃] + [Yb₂O₃] + [Lu₂O₃] + [Y₂O₃] HREO (Heavy Rare Earth Oxides) = [Sm₂O₃] + [Eu₂O₃] + [Gd₂O₃] + [Tb₄O₇] + [Dy₂O₃] + [Ho₂O₃] + [Er₂O₃] + [Tm₂O₃] + [Tm₂O₃] + [Yb₂O₃] + [Lu₂O₃] + [Lu₂O₃] + [Tm₂O₃] + [Tm₂O₃] + [Lu₂O₃] +
Location of	- Accuracy and quality of curveys used to locate drillholog	 MREO (Magnet Rare Earth Oxides) = [Nd₂O₃] + [Pr₆O₁₁] + [Tb₄O₇] + [Dy₂O₃] Drillhole collars were georeferenced with DGPS (RTK). Accuracy is estimated to be within 0.1 metres.
data points	• Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 Drinnole collars were georelerenced with DGPS (RTK). Accuracy is estimated to be within 0.1 metres. Map and collar coordinates are in SIRGAS 2000 UTM Zone 22 South.
p		 Topographic control was gathered using a photogrammetric drone in collaboration with a Sentinal-2
	• Specification of the grid system used.	satellite Copernicus digital terrain model specifically in areas of denser vegetation. Both methods
	Quality and adequacy of topographic control.	were georeferenced with DGPS (RTK) unitising the coordinates of the registered drillhole collars.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve 	• The limited outcrop prompted the initial use of detailed magnetic and radiometric aerial survey imagery to establish the intrusion boundary. A ground magnetic survey was later conducted with a line spacing of 200 metres and a reading interval of 20 metres to refine this boundary further.
	estimation procedure(s) and classifications applied. • Whether sample compositing has been applied.	 Magnetic interpretation was supported by a soil geochemical survey and mapping of occasional rock float. Soil sampling was completed on three north-south and three east-west traverses, all 400 metres apart and with 100 metre sample intervals.
		• The 38 auger drillholes are concentrated near the centre of the intrusion, featuring an orthogonal spacing of around 25 metres. These drillholes reached an average depth of 13.4 metres, with the deepest measuring 20 metres. In addition, there are 121 aircore drillholes, primarily spaced at 50 x 100 metres in the area northwest of the intrusion centre, which were later expanded to a

Criteria	JORC Code explanation	Commentary
		 regional 400 x 400 metres. Their average depth is 25.1 metres, with a maximum depth of 33 metres. Furthermore, 16 RC drillholes are clustered around the carbonatite core, maintaining an irregular spacing of roughly 50 metres and achieving an average depth of 50.5 metres and a maximum depth of 51 metres. The diamond core drilling features a more irregular spacing of 400 metres, although some holes are positioned closer to the centre. The average depth for the 17 inclined core drillholes is 59.9 metres, with the deepest drillhole (MN-DD-0010) reaching 72.6 metres. On the northern side, a small number of aircore drillholes were completed outside of the mapped intrusion to confirm lithology beneath the thin cover. The data quality, spacing, and distribution is sufficient to establish grade continuity only over the localised areas of the project area. There are large volumes within the carbonatite with insufficient
		data for any estimation of grade and that require further drilling.
Orientation of data in relation to geological structure	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	• No orientation bias has been detected at this stage. It is expected there will be a vertical variation related to the deep lateritic weathering combined with the concentric nature of the carbonatite mineralogy and geochemistry.
	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• The location of the Project is probably structurally controlled, but the internal target mineralogy is not.
Sample security	• The measures taken to ensure sample security.	Samples were given individual sample numbers for tracking.
		• The sample chain of custody was overseen by the EDEM geologist in charge of the program.
		• EDEM company geologist was responsible for collecting the samples and transporting them to the company dispatch centre or commercial laboratory.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 No external audits or review of the sampling techniques and data related to niobium mineralisation have been completed.

Section 2. Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Santa Anna Project is wholly contained with two permits ANM 860.896/2024 and 861.559/2021 which cover the entire alkaline complex. The current holders are subsidiaries of Empresa de Desenvolvimento e Mineração (EDEM). Power Minerals Ltd has a binding option to acquire ANM 860.896/2024 and 861.559/2021 from EDEM subject to completion of due diligence and certain exploration milestones. No impediments are known or expected by the company to prevent the transfer occurring. The permits cover 1,705 hectares, aregranted and in good standing with the relevant government authorities and there are no known impediments to operating in the project area. The site is 6km east-southeast from the small town of Mundo Novo, in the Brazilian state of Goiás. It is on the south side of state highway GO-156 and 335km northwest of the Brazil capital of Brasilia.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 The Project was identified in 2021 by EDEM after investigating a significant radiometric anomaly found during aerial geophysical surveys. These surveys were a part of the Southeast Mato Grosso Aerogeophysical Project (2011) and the West Aerogeophysical Project of the Mara Rosa Magmatic Arc (2005), both of which utilized a line spacing of 500 metres and a flight height of 100 metres. There is no known artisan or modern exploration over the site prior to EDEM.
Geology	• Deposit type, geological setting and style of The Project is situated in the northern part of the Goiás Alkaline Province mineralisation.	 The Project is situated in the northern part of the Goiás Alkaline Province (GAP), a region notable for its Late Cretaceous alkaline magmatism along the northern boundary of the Paraná Basin. This magmatic activity is linked to the NE-SW Trans-Brazilian Lineament and has been shaped by the influence of the Trindade mantle plume. Alkaline intrusions in this area have penetrated through orthogneiss and granites of the Goiás Magmatic Arc, as well as the overlying basalts and sedimentary formations of the Paraná Basin. The Project is situated at the intersection of the Goiás Magmatic Arc and the Araguaia Belt, with its edges distinctly outlined by the Trans-Brazilian Lineament. Similar to other occurrences of alkaline rocks in the GAP, the carbonatite intrusion took place within a dilatant zone that developed along a northwest lineament, highlighting the tectonic influences on its magmatic development. The internal detail of the carbonatite intrusion is poorly understood due lack of <i>in situ</i> outcrop, intense laterization, and the limited drilling completed. Zones of fenitized (phlogopite) mafic and felsics, various alkaline rocks, different carbonatites, including magnetite-rich and Ca-Mgrich phases are poorly mapped.

Criteria	JORC Code explanation	Commentary
Drillhole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole downhole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent 	• The gallium material drillhole information is described in main section of the announcement, and details provided in Figure 1 and Tables 1 and 2. Full drillhole data is included within the 16 and 22 April 2025 Power Minerals ASX announcements.
Data aggregation methods	 Person should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cutoff grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No upper-cut has been applied. Unless otherwise stated, all reported intercepts grades over more than one sample are weighted average by length. No metal equivalents values are used in this release. Combined totals of rare earth oxides are used as defined in the <i>Verification of sampling and assaying</i> section above.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g. 'downhole length, true width not known'). 	 The precise orientation/geometry of the mineralisation is unknown but is interpreted to be vertically stratified due to the overprinting effects of lateritic weathering within the boundaries of the intrusion. The deep weathering profile often extends to depths of over 30 metres and as much as 50 metres below surface. The majority of drillholes (n=175) are vertical and thus, are considered to be orthogonal to the generally flat lying regolith-controlled mineralisation. There are 15 diamond core drillholes which are steeply inclined at -70°, and one at -65° and one at -60°. All reported intersections for these drillholes are provided as downhole lengths. All reported intersections are downhole lengths.

Criteria	JORC Code explanation	Commentary
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	• The appropriate exploration maps and diagrams have been included within the main body of this release.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant drillhole gallium results have been reported.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Soil sampling was completed on three north-south and three east-west traverses, all 400 metres apart and with 100 metre sample intervals, centred over the intrusion. EDEM has successfully completed around 400 metres of trenching to collect bulk samples specifically for phosphate testing. It's important to note that this activity holds little significance for the niobium exploration efforts. A significant number of bulk density measurements have been conducted throughout the project area utilizing the diamond core method in conjunction with the caliper approach (where volume is measured and calculated before weighing the sample). In total, 155 measurements were collected from 11 distinct drillholes, spanning depths from 0.14 to 71.3 metres. The averaged bulk density across all measurements stands at 2.18t/m³, confirming the anticipated trend of increasing bulk density with increasing depth. An undergraduate thesis was completed by Letícia Gonçalves de Oliveira and Taís Costa Cardoso, on the Project area at the Federal University of Goiás in 2022. Ground magnetics and soil and rock sampling was undertaken in conjunction EDEM. Petrology and mineralogy (XRD) studies were completed by the university.
Further work	 The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Preparations for further drilling is underway to confirm results, infill and extend known the mineralisation.