



**ASX RELEASE** 

14 February 2023

**ASX CODE** 

**PNN** 

#### **REGISTERED OFFICE**

## **Power Minerals Limited** 6/68 North Terrace

Kent Town SA 5067

t: +61 8 8218 5000 e: admin@powerminerals.com.au w: www.powerminerals.com.au

#### **BOARD**

#### **Stephen Ross** Non-Executive Chairman

## **Mena Habib**Executive Director

## James Moses Non-Executive Director

## **David Turvey**Non-Executive Director

#### **PROJECTS**

#### **Argentina**

Salta Lithium Project

Santa Ines Copper-Gold Project

#### Australia

Eyre Peninsula Kaolin-Halloysite Project

Musgrave Nickel-Copper-Cobalt-PGE Project

# Incahuasi Mineral Resource drilling expanded to grow lithium brine potential

- Drilling expanded to up to 3 additional holes to maximise Mineral Resource potential and test for presence of water at Incahuasi
- Drilling at second drill hole (PM22-IN-02) of JORC Mineral Resource drilling confirms significant aquifer thickness, lithium grade and indicative brine flow rate at Incahuasi salar
- PM22-IN-02 successfully completed to a depth of 320.5m and intersected ~300m zone with potential to host lithium brines in similar lithologies to first hole at Incahuasi
- Assay results from packer test brine samples confirm lithium content in brines averaging 210ppm Li from 28m to 310m depth in drillhole PM22-IN-02
- Brine and drill core samples from PM22-IN-02 sent for analysis to confirm detailed brine chemistry and density, drainable porosity, and lithium grades
- Drilling then planned to move to Rincon and Pocitos salares
- Power's ongoing drilling campaign is designed to deliver a significant increase to the Project's existing JORC lithium Mineral Resource, to support future development plans

Lithium exploration and development company Power Minerals Limited (ASX: PNN) (**Power** or **the Company**) is pleased to announce that it has intersected an interval of approximately 300 metres with potential to host lithium in brines in its Mineral Resource definition drilling program at the Salta Lithium-Brine Project, in the Salta province in the lithium triangle of north-west Argentina (Figure 4).

The second drillhole at the Incahuasi salar (PM22-IN-02) was successfully completed to a depth of 320.5 metres, and visual drill core logging show similar and consistent lithologies to the first drillhole (ASX announcement, 12 January 2023).

Initial assay results from nine packer brine samples taken from selected intervals between 28m to 310m depth in drillhole PM22-IN-02 contained 205-227 ppm Li (averaging 210 ppm Li).



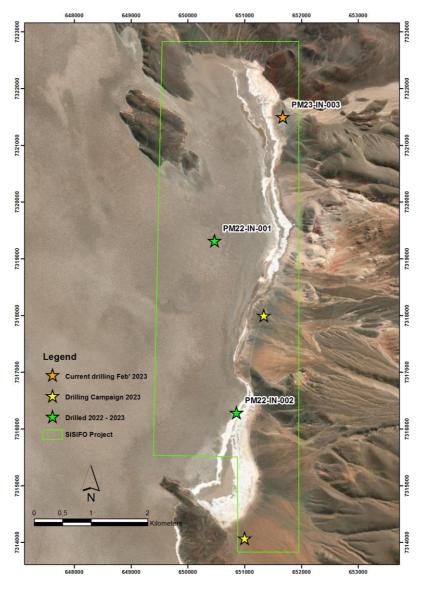
In addition, PM22-IN-02 delivered a static brine flow of  $\sim$ 2,500 litres/hour ( $\sim$ 0.7 litres/second) in a 5 ½ inch diameter hole, from airlift tests at a depth of 55m (Figure 1). This is a positive result and indicates that the aquifer has suitable drainable porosity for brine extraction from a larger diameter production well.





Figure 1: Airlift test of lithium brine flow rate, drill hole PM22-IN-002, Incahuasi salar

PM22-IN-02 intersected an aggregate interval of up to approximately 300 metres, which has the potential to host lithium in brines. Brine samples and core from PM22-IN-02 have been sent for laboratory analysis to determine detailed brine chemistry and density, drainable porosity, and lithium grades. Results will be reported as received.


The positive assay results from PM22-IN-02, follows results of packer brine samples from the first hole at Incahuasi (PM22-IN-01) which returned lithium grades averaging 195 ppm Li (equiv. mg/L, milligrams per litre) over a 276-metre interval (ASX announcement, 12 January 2023).

See Figure 2 for drillhole locations.



"Our Mineral Resource definition drilling at Incahuasi continues to progress well. There appears to be potential for drillhole PM22-IN-02 to host lithium in brines over a significant aggregate interval. Brine samples and core have been sent for analysis and we eagerly await results. We are now looking to expand and maximise the lithium brine Mineral Resource potential at Incahuasi and have extended the program, with up to three additional holes. These will aim to contribute additional lithium brine to a proposed maiden Mineral Resource at Incahuasi and test for the presence of water for a potential future DLE operation."

**Power Minerals Executive Director Mena Habib** 



**Figure 2**: Drillhole locations at Incahuasi salar within Power Minerals' Sisifo Licence and potential lithium brine Resource area (green outline).



#### Incahuasi drilling expanded for up to 3 additional drillholes

Based on the positive outcomes from the two completed Mineral Resource definition drillholes at Incahausi, Power has now expanded its drilling program at this salar with up to three additional drillholes (Figure 2).

These holes are designed to maximise the lithium brine Mineral Resource potential of Incahuasi and also to test for the presence of water, a key requisite input for a potential, future direct lithium extraction (DLE) operation at Incahuasi.

The first additional hole (PM23-IN-03) has already commenced (Figure 3).



Figure 3: Drill site for third drillhole (PM23-IN-03) at the Incahuasi salar



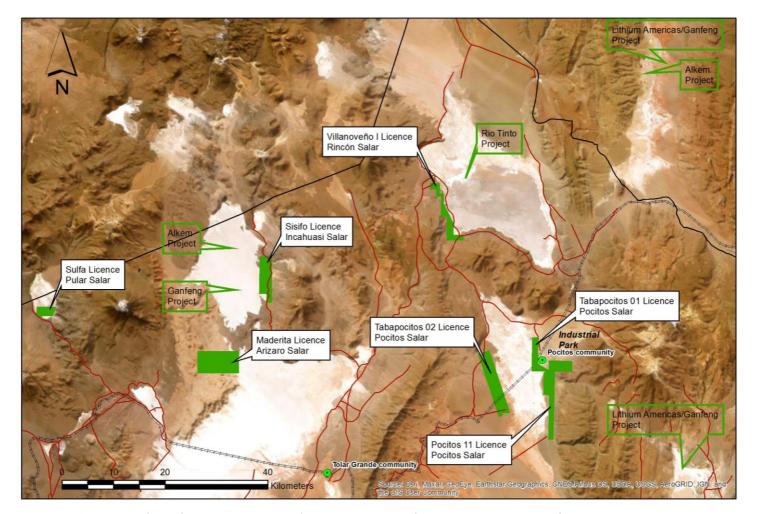



Figure 4: Salta Lithium Brine Project location map, north-west Argentina (PNN licenses in green)

#### **About the Salta Lithium Project**

The Salta Project is strategically located in the Salta province in north-west Argentina and is part of the Lithium Triangle, the world's leading lithium-brine region. The Project consists of five salares (salt lakes) that sit within seven mining leases, over a total project area of 147.07km². The Project's Incahuasi salar is located immediately adjacent to Ganfeng Lithium Co. Ltd's project and the Rincon salar is adjacent to Rincon Mining Ltd, recently acquired by Rio Tinto Ltd for US\$825 million. Power is focused on the accelerated exploration and development of the Project, to drive shareholder value.

Authorised for release by the Board of Power Minerals Limited.

#### -ENDS-



#### For further information please contact:

Power Minerals Limited E: admin@powerminerals.com.au T: +61 8 8218 5000

Additional information is available at www.powerminerals.com.au

#### **About Power Minerals Limited**

Power Minerals Limited is an ASX-listed lithium-focused exploration and development company, committed to the systematic exploration and development of its core asset, the Salta Lithium Brine Project in the prolific lithium triangle in the Salta Province in Argentina. It is currently undertaking a major JORC Mineral Resource expansion drilling campaign at Salta, and is focused on expediting development of the Project in to a potential, future lithium producing operation. Power also has a portfolio of other assets in key, demand-driven commodities including; kaolin-halloysite, nickel-coppercobalt and PGEs plus copper-gold.

#### **Competent Persons Statement**

This announcement regarding the Salta Lithium project has been prepared with information compiled by Marcela Casini, MAuslMM. Marcela Casini is the Company's Exploration Manager, Argentina and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Marcela Casini consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

#### **Forward looking Statements**

This announcement contains 'forward-looking information' that is based on the Company's expectations, estimates and projections as of the date on which the statements were made. This forward-looking information includes, among other things, statements with respect to the Company's business strategy, plans, development, objectives, performance, outlook, growth, cash flow, projections, targets and expectations, mineral reserves and resources, results of exploration and related expenses. Generally, this forward-looking information can be identified by the use of forward-looking terminology such as 'outlook', 'anticipate', 'project', 'target', 'potential', 'likely', 'believe', 'estimate', 'expect', 'intend', 'may', 'would', 'could', 'should', 'scheduled', 'will', 'plan', 'forecast', 'evolve' and similar expressions. Persons reading this announcement are cautioned that such statements are only predictions, and that the Company's actual future results or performance may be materially different. Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the Company's actual results, level of activity, performance or achievements to be materially different from those expressed or implied by such forward-looking information.

## JORC Code, 2012 Edition – Table 1 Report

## **Section 1 Sampling Techniques and Data**

(Criteria in this section apply to all succeeding sections.)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling techniques    | <ul> <li>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralization that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralization types (e.g. submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>The diamond drill holes was completed using triple tube HQ3 drilling with 61.1mm diameter core. Core recovery was measured on all core runs.</li> <li>Sampling from the diamond core for petrophysical parameters has been completed but results have not yet been received.</li> <li>Liquid samples were collected using drillhole packers at various depths with regular two metre thicknesses.</li> <li>Drillhole packer fluid samples were measure at the time of sampling for density, temperature and pH.</li> <li>During the packer test, several 200L drums are filled with drillhole fluid. If a single drum is not filled in 30 minutes, the formation interval being tested is considered dry, in that case it is considered that the fluid is only that within the drilling barrel and so is not representative of the formation at that depth.</li> <li>To collect a representative sample the drillhole fluid must be cleaned. Current sampling involved taking out the amount of brine that represents three times the drillhole volume capacity at any given depth.</li> <li>Nine liquid samples (plus quality control samples) from given depths have been analysed for a suite of elements, density, electrical conductivity and pH.</li> </ul> |
| Drilling<br>techniques | <ul> <li>Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air<br/>blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple<br/>or standard tube, depth of diamond tails, face-sampling bit or other<br/>type, whether core is oriented and if so, by what method, etc.).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Contractor Hidrotec SRL completed the drilling by triple tube<br/>HQ3 diamond core.</li> <li>Surface brine has been used as drilling fluid for lubrication<br/>during drilling</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill sample recovery                                   | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximize sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                         | <ul> <li>Diamond drill core recoveries were calculated by measuring the core recovered against the drillers recorded depth for each diamond core run.</li> <li>There was a high range in core recovery (zero to 100%) in some sections of drillhole. With complete core loss it is difficult to impossible to determine visual porosity for that interval. It is unknown if the core loss will reflect a positive or negative bias on the results reported over that down hole section.</li> <li>Brine quality is not directly related to core recovery and is largely independent of the quality of core samples. However, the porosity and permeability of the lithologies where samples are taken is related to the rate of brine inflow</li> </ul> |
| Logging                                                 | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                              | <ul> <li>All drill core has been qualitatively logged by company geologists, recording lithology, alteration, sedimentary structures, visual porosity estimate to company procedures.</li> <li>All drill core was photographed prior to removing from site.</li> <li>The entire length of all drillhole core has been logged.</li> <li>The drillhole is geophysically logged for resistivity and spontaneous potential (SP) at assist in identifying the aquifer.</li> </ul>                                                                                                                                                                                                                                                                           |
| Sub-sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximize representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material</li> </ul> | The sampling of drill core for petrophysical parameters is currently in progress.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Criteria                                               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of<br>assay data<br>and<br>laboratory<br>tests | <ul> <li>being sampled.</li> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</li> </ul> | <ul> <li>The Alex Stewart (Norlab) laboratory in Palpala, Jujuy,         Argentina, is used as the primary laboratory to conduct the         assaying of the brine samples collected as part of the         sampling program. The Alex Stewart laboratory is specialized         in the chemical analysis of brines and inorganic salts, with         experience in this field.</li> <li>Control samples including field duplicates, standards and         blanks were used to monitor potential contamination of         samples and the repeatability of analyses. Control samples         were inserted at a ratio of 1:2.6 field samples (30% control).</li> <li>The control samples, including one blind field duplicate, two         blanks, and one Standard samples were all within acceptable         ranges.</li> <li>Alex Stewart also provided results for two laboratory</li> </ul> |
| Verification of<br>sampling and<br>assaying            | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                                                                                                                                                                                                   | <ul> <li>duplicates with values within acceptable variances.</li> <li>On completion of the drilling the logging and sampling data will be entered into spreadsheets and will be checked by the Exploration Manager for inconsistencies and then stored in an MS Access relational database.</li> <li>No holes were twinned.</li> <li>Drill core was logged by hand on printed log sheets according to standardized header, lithological and textural information. Data is then input into MS Excel spreadsheets which are then emailed to database manager for input into MS Access. The data is interrogated and all discrepancies are communicated and resolved with the filed teams to ensure only properly verified data is stored in the Access database.</li> </ul>                                                                                                                        |
| Location of                                            | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | All drill hole collar was initially surveyed with a hand held                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| data points                                                         | <ul> <li>down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                                                     | <ul> <li>GPS.</li> <li>No drillhole downhole orientation surveys were conducted on the vertical hole.</li> <li>All work has been carried out using standard WGS84 UTM Zone 19S coordinate system.</li> </ul>                                                                                                                                                                                                                                                        |
| Data spacing<br>and<br>distribution                                 | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul> | <ul> <li>This was the maiden drill hole at Inchuasi Salar and the<br/>diamond drilling spacing when complete is expected to be<br/>sufficient to establish the geological and grade continuity of<br/>the deposit for Mineral Resource estimation.</li> </ul>                                                                                                                                                                                                       |
| Orientation of<br>data in<br>relation to<br>geological<br>structure |                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>The salt lake (salar) deposits that contain lithium-bearing brines generally have sub-horizontal beds and lenses that contain sand, gravel, salt, silt and clay. The vertical diamond drill hole will provide a better understanding of the stratigraphy and the nature of the sub-surface brine bearing aquifers</li> <li>Reported depths are all down-hole depths in meters.</li> </ul>                                                                  |
| Sample<br>security                                                  | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                      | <ul> <li>Samples were transported to the laboratory for chemical analysis in sealed 1-litre rigid plastic bottles with sample numbers clearly identified. Samples were transported by a trusted member of the team or courier.</li> <li>The water samples were moved from the drillhole site to secure storage at the camp on a daily basis. All brine sample bottles sent to the laboratory are marked with a unique label not related to the location.</li> </ul> |
| Audits or<br>reviews                                                | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                              | <ul> <li>All planned sampling techniques and procedures for data<br/>capture were deemed to be of industry standard and<br/>satisfactory; being supervised by the company's senior and</li> </ul>                                                                                                                                                                                                                                                                   |

| Criteria | JORC Code explanation | Commentary              |
|----------|-----------------------|-------------------------|
|          |                       | experienced geologists. |

## **Section 2 Reporting of Exploration Results**

(Criteria listed in the preceding section also apply to this section

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.</li> </ul> | <ul> <li>Mina 'Sisifo' File Number 20545 is held 100% by Power Minerals SA, an Argentina entity wholly owned by Power Minerals Ltd (ASX:PNN).</li> <li>The Mina is held under grant from the Mining Court of Salta Province, Argentina in perpetuity and is appropriately maintained.</li> </ul>                                                                                                                                                                                                 |
| Exploration<br>done by other<br>parties          | <ul> <li>Acknowledgment and appraisal of exploration by<br/>other parties.</li> </ul>                                                                                                                                                                                                                                                                                                                                                              | There is no known modern exploration in this local area by other parties.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Geology                                          | Deposit type, geological setting and style of<br>mineralization.                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>The sediments within the salar consist of salt/halite, clay, sand and silt horizons, accumulated in the salar from terrestrial sedimentation and evaporation of brines.</li> <li>Brines within the Salt Lake are formed by the solar concentration of fluids containing trace amounts of elements such as lithium. The lithium originated as a product of geothermal fluids and the weathering of volcanic rocks.</li> <li>Geology was recorded during the diamond drilling.</li> </ul> |
| Drill hole<br>Information                        | <ul> <li>A summary of all information material to the<br/>understanding of the exploration results including a<br/>tabulation of the following information for all<br/>Material drill holes:</li> <li>easting and northing of the drill hole collar</li> </ul>                                                                                                                                                                                     | <ul> <li>Drillhole ID: PM22-IN-02</li> <li>Easting: 650855.3 (WGS84, Zone 19S)</li> <li>Northing: 7316288.1 (WGS84 Zone 19S)</li> <li>Vertical hole</li> </ul>                                                                                                                                                                                                                                                                                                                                   |

| Criteria                                                             | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                               |               |             |         |     |  |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|---------|-----|--|
|                                                                      | <ul> <li>elevation or RL (Reduced Level – elevation above sea level in meters) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> <li>If the exclusion of this information is justified on the</li> </ul>                                                                                                                                                                                                                                                                                                | <ul> <li>Total hole depth: 320.5 metres.</li> <li>Sample results, Li in mg/L, depth In metres, density in kg/L.</li> </ul>                                                               |               |             |         |     |  |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLE                                                                                                                                                                                   | DEPTH<br>FROM | DEPTH<br>TO | DENSITY | Li  |  |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PNN2563                                                                                                                                                                                  | 27            | 29          | 1.21    | 208 |  |
|                                                                      | basis that the information is not Material and this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PNN2562                                                                                                                                                                                  | 63            | 65          | 1.21    | 209 |  |
|                                                                      | exclusion does not detract from the understanding of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PNN2560                                                                                                                                                                                  | 75            | 77          | 1.209   | 211 |  |
|                                                                      | the report, the Competent Person should clearly explain why this is the case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PNN2558<br>(averaged)                                                                                                                                                                    | 99            | 101         | 1.209   | 214 |  |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PNN2557                                                                                                                                                                                  | 111           | 113         | 1.207   | 227 |  |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PNN2556                                                                                                                                                                                  | 243           | 245         | 1.207   | 205 |  |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PNN2554                                                                                                                                                                                  | 255           | 257         | 1.207   | 207 |  |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PNN2553                                                                                                                                                                                  | 279           | 281         | 1.209   | 205 |  |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PNN2552                                                                                                                                                                                  | 309           | 311         | 1209    | 207 |  |
| Data<br>aggregation<br>methods                                       | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul> | <ul> <li>Assay averages have been provided where multiple sampling occurs in<br/>same sampling interval. Multiple samples include field and laboratory<br/>duplicate samples.</li> </ul> |               |             |         |     |  |
| Relationship<br>between<br>mineralization<br>widths and<br>intercept | <ul> <li>These relationships are particularly important in the<br/>reporting of Exploration Results.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>The drillhole was drilled with dip of -90 degrees (vertical).</li> <li>Mineralisation interpreted to be horizontally lying and drilling is perpendicular to this.</li> </ul>    |               |             |         |     |  |

| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                      |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lengths                                     | <ul> <li>If it is not known and only the down hole lengths are<br/>reported, there should be a clear statement to this<br/>effect (e.g. 'down hole length, true width not known').</li> </ul>                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                 |
| Diagrams                                    | <ul> <li>Appropriate maps and sections (with scales) and<br/>tabulations of intercepts should be included for any<br/>significant discovery being reported These should<br/>include, but not be limited to a plan view of drill hole<br/>collar locations and appropriate sectional views.</li> </ul>                                                                                                                                 | Map is provided. Relevant sections are provided in the main report.                                                                                                                                                             |
| Balanced<br>reporting                       | <ul> <li>Where comprehensive reporting of all Exploration<br/>Results is not practicable, representative reporting of<br/>both low and high grades and/or widths should be<br/>practiced to avoid misleading reporting of Exploration<br/>Results.</li> </ul>                                                                                                                                                                         | All grade information has been provided.                                                                                                                                                                                        |
| Other<br>substantive<br>exploration<br>data | <ul> <li>Other exploration data, if meaningful and material,<br/>should be reported including (but not limited to):<br/>geological observations; geophysical survey results;<br/>geochemical survey results; bulk samples – size and<br/>method of treatment; metallurgical test results; bulk<br/>density, groundwater, geotechnical and rock<br/>characteristics; potential deleterious or contaminating<br/>substances.</li> </ul> | Core samples for petrophysical measurements have been collected but results have not been completed.                                                                                                                            |
| Further work                                | <ul> <li>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                                 | <ul> <li>The results will be assessed on an ongoing basis and additional holes will<br/>be planned and drilled when deemed necessary. All further work on each<br/>target area is dependent on the results received.</li> </ul> |